

International governance of climate engineering research and deployment

Dr Ralph Bodle LLM

Prof Dr Sebastian Oberthür

Ecologic Institute

Institute for European Studies

IES POLICY FORUM
BRUSSELS, 28 June 2013

What is climate engineering? (also "geoengineering")

- techniques to cool the earth at a global scale, without reducing GHG emissions,
 by reducing incoming solar radiation or by removing CO2 from the atmosphere
- generic and general term comprising several different concepts:

Solar Radiation Management (SRM)

- •Sulfate aerosols in the atmosphere
- Cloud brightening from ships
- Desert reflectors
- Installations in outer space

Carbon Dioxide Removal (CDR)

- Ocean fertilisation
- Ocean liming
- Ocean biomass storage
- ·Biomass and biochar on land
- Enhanced weathering
- Air capture of CO2 ("artificial trees")
- •[Carbon capture and storage (CCS)]

CE mostly at conceptual or modelling stage, but also **field experiments** on ocean fertilisation and initial attempts at aerosol injection

Policy implications and challenges

- research funded at least by EU, UK, Germany, USA, private foundations
- emerging public debate and a rapid growth of literature
- link to international climate policy
- climate engineering will be in IPCC AR5

=> need for international governance framework?

Main existing governance:

- regulatory efforts on ocean fertilisation: London Convention / Protocol (LC/ LP)
- two CBD decisions on climate engineering in general

Research project for the German Federal Environment Agency

"Options and proposals for governance of geoengineering research and deployment", - UBA research project FKZ 3711 11 101 –

Research project's focus

- <u>international</u> regulation / governance of climate engineering
- political feasibility

3 parts

- definition of CE
- existing governance framework under international law
- governance options and proposals => this presentation

Different climate engineering concepts

Developing CE governance options - overview

Step 1: develop **objectives and criteria** for *international* governance of climate engineering

Step 2: derive core elements of the envisaged governance from step 1

Step 3: analyse which CE concepts primarily require international governance

Step 4: identify **regulatory gaps:** does existing international governance correspond to the envisaged governance?

Step 5: Options and propsals for filling the regulatory gaps identified in step 4

Step 1: Objectives and criteria for international CE governance

Need for **explicit objectives and criteria** that any proposed governance arrangements are meant to pursue, balance and fulfil

Overarching objectives

- avoid transboundary environmental and health impacts
- avoid political tensions, in particular unilateral CE activity
- coordinate scientific research

Specific criteria

- precautionary approach relating to the risks of CE
- facilitate broad international participation and acceptance
- not undermine mitigation efforts
- aim at legitimacy through public participation and transparency
- flexibility: ability to incororate new scientific knowledge and public debate

Note: "trade-offs" – between conflicting objectives and compromises

Step 2: core elements of the envisaged governance

Key questions:

- how high is the risk of unilateral action
- how high is the risk of transboundary impacts
- => **prohibition in principle, combined with** clear conditions for **exceptions**, e.g. for legitimate research
 - many design options in terms of substance and procedure
 - international level / national level
 - in principle includes research activities beyond "indoor" activities (see next slide), but also a potential exemption under clearly defined conditions.

Step 2: core elements of the envisaged governance (cont.)

in principle include **research** in general prohibiton:

- separation of governance structures and implied sequencing of their elaboration seems problematic and non-advisable because
 - (1) there is no clear-cut separation of the application of CE techniques "for research" from the application "for other purposes" and
 - ▶ (2) separate governance structures for research would be likely to provide an important precedent and blueprint for the governance of deployment (for other purposes)
- => in principle include research activities beyond "indoor" activities, but also a potential exemption under clearly defined conditions.
- For governance purposes a combination of elements should be defined at the international level as guidance for determining exemptions.

Step 2: core elements of the envisaged governance (cont.)

- No closed definition determining normative consequences. A general definition could be combined with a positive list of activities addressed.
- clear separation of scientific input and political decisions.
- possibility to include or refer to international scientific and technological assessments.
- appropriate structures for reporting and monitoring of national-level decisions and activities.
- central institution as "first point of contact"
 - "overarching but not supervisory" function
 - dos not exclude horizontal division of labour with specialised regimes
- possibility for regular meetings in order to ensure flexibility.
- ability to address regime conflicts.

Step 3: identify geoengineering concepts primarily requiring international governance

Not all CE concepts have to be regulated at the international level

- risk of unilateral action
- risk of transboudary impacts

⇒ priority:

- atmospheric SRM
- marine geoengineering

Step 4: regulatory gaps in existing international governance

= to what extent does the existing governance framework under international law correspond to the envisaged governance for the CE concepts requiring priority attention?

In general: rudiments of an emerging regime complex

- CBD central regime and LC/LP specialised regime
- other institutions not or hardly active
- CBD and LC/LP (with OSPAR) at least basically correspond to our normative governance approach.
- However, significant shortcomings, e.g.
 - horizontal and vertical division of labour unclear
 - CBD not fully established as central forum
 - providing or compiling scientific assessments; a common forum for review

Step 4: governance gaps (cont.)

Main governance gap: atmospheric SRM

- highest risk potential
- not specifically regulated so far; overarching governance by CBD insufficient

Ocean fertilisation:

detailled but not (yet) binding regime under LC/LP

Other CE concepts:

 additional normative gap, but international governance not or not yet necessary (space, desert reflectors)

Step 5: Options for filling the governance gaps

Good reasons for central regime with overarching functions

- central point of first contact, but not sole regulatory instance
- build on existing institutions where appropriate evolutionary approach
- time is not (yet) ripe for specialised CE regime

CBD prime candidate for becoming the central institution recognised as a first point of contact and overarching functions

- existing basic governance can be developed, despite shortcomings
- alternative: UNEP, but need to wait for current developments
- climate regime not well suited (but might nevertheless attain specialised role)

Step 5: Options for filling the governance gaps (cont.)

SRM

- CBD may also be the most appropriate forum, perhaps UNEP (see above)
- consider options under LRTAP regime
- Montreal Protocol has crucial shortcomings

Marine CE

- generally support LC/LP approach as example of specialised regime
- design the inclusion of further marine geoengineering concepts

Research

 Need for international scientific assessments => mandate for international central institution

Thanks!

Dr Ralph Bodle LLM

ralph.bodle@ecologic.eu

Ecologic Institute www.ecologic.eu

Prof Dr Sebastian Oberthür

Sebastian.Oberthuer@vub.ac.be

Institute for European Studies www.ies.be

