Für Mensch & Umwelt

Workshop "Act now - Antibiotics and Antimicrobial resistance in the environment"

Options to minimize antibiotics and antibiotic resistances in the environment

Jutta Klasen

Head of Chemical Safety Division, German Environment Agency

Brussels, 07 November 2018

The EU One Health Action Plan against AMR prospects: Concrete actions to better addressing the role of the environment in tackling AMR.

The German Environment Agency (Umweltbundesamt, UBA) prepared a **background paper**:

Antibiotics and Antibiotic Resistances in the Environment.

- four sections:
 - General introduction
 - Comprehensive scientific background:

How do antibiotics enter the environment?

How do antibiotic-resistant bacteria develop in the environment and where can they be found?

- The **interface between people and the environment** what needs to be taken into account?
- Research needs and options for action

https://www.umweltbundesamt.de/publikationen/antibiotics-antibiotic-resistances-in-the

Workshop "Act now - Antibiotics and Antimicrobial resistance in the environment", Brussels, 07 November 2018

Antibiotics also pose risks to environmental ecosystems

Inhibition of growth of algae, cyanobacteria and plants already at low concentrations (μg/L)

Green algae

Cyanobacteria

Aquatic plants

Terrestrial plants

- Impairment of primary producers
- Impact on food webs of ecosystems
- Mixture toxicity of antibiotics and effects on soil microorganisms
- Uptake of antibiotics in terrestrial plants

Environmental hot spots of AMR development and spreading Production Veterinary medicine **Human medicine** Hospitals • Nursing (Improper) disposal homes Households Hot spot biogas waste water treatment plant plant Antimicrobial resistance Sewage effluent Sewage sludge Surface water Soil Surface water Sediment Sediment **Ground water** Drinking water Workshop "Act now - Antibiotics and Antimicrobial resistance in the environment", Brussels, 07 November 2018

Main drivers for the emergence and dissemination of AMR in the environment:

- Transmission of resistance genes between different bacterial species, i.e. horizontal gene transfer (HGT).
- > Natural selection and co-selection of resistance.

Even extremely low concentrations of antibiotic residues are sufficient for giving antibiotic-resistant bacteria a **selection advantage** compared with non-resistant bacteria (selection pressure).

This selection can also be fostered by other environmental pollutants, such as biocides, heavy metals (zinc, copper) and antibiotic mixtures.

→ Monitoring of environmental matrices for antibiotic residues (and co-selecting agents) and resistant bacteria is crucial to fill the existing gaps in knowledge

Workshop "Act now - Antihiotics and Antimicrohial resistance in the environment" Rrussels 07 November 2018

Areas of activity: specific measures Communi-Prevention cation **Authorisation** 5 measures 2 measures antibiotics 5 measures IV. Waste water treatment plants Waters 5 measures 8 measures VII. Agriculture Soil 1 measure 5 measures Workshop "Act now - Antibiotics and Antimicrobial resistance in the environment", Brussels, 07 November 2018

4

Specific measures: prevention, communication

I. Prevention:

- Use of antibiotics should be limited to the medically necessary level.
- Pharmaceutical forms for application should be adapted to reduce the residues of antibiotics in excreta.

II. Communication:

- Doctors, pharmacists, veterinarians and farmers must be **informed and trained** on the topic of antibiotics in the environment.
- Campaigns on the correct disposal of antibiotic residues.

Workshop "Act now - Antibiotics and Antimicrobial resistance in the environment", Brussels, 07 November 2018

q

Specific measures: authorisation of human and veterinary pharmaceuticals

Current regulatory situation:

- Env. risks of human/veterinary medicines only assessed since 2005/2006
- Lack of env. data for about 84% of legacy antibiotics authorized before
- Current environmental risk assessment does not include risks for antibiotic resistance

III. Measures to improve authorisation of antibiotics:

- Develop and implement **assessment methods and criteria** for antibiotics and antibiotic resistances.
- Develop and **implement a risk assessment** for the occurrence of resistances.
- Develop a substance-based environmental assessment for antibiotics (monographs) and publish harmonized endpoints
- Include environmental considerations in the risk-benefit analysis for the authorization of antibiotics for human medicine

Workshop "Act now - Antibiotics and Antimicrobial resistance in the environment", Brussels, 07 November 2018

0

Specific measures: waste water treatment plants, waters

IV. <u>Direct and indirect discharge of waste water treatment plants (municipal and industrial)/production sites:</u>

- Identify **hotspots for the discharge** of antibiotics and antibiotic resistances.
- Develop **monitoring guidelines** to be able to better monitor the discharge of antibiotics and antibiotic resistances into waste waters.
- Improve the technology at waste water treatment plants.
- Compile the production locations and examine the emissions from production facilities.

V. Surface waters/bathing waters/groundwater:

- Develop monitoring guidelines and assessment concepts for the monitoring of antibiotic resistance in surface and bathing waters.
- Include antibiotics and antibiotic resistances in the **Water Framework Directive.**
- Reduce the input of antibiotic resistances into surface and bathing waters, e. g. through the widening of riparian strips and the designation of water protection zones.

Workshop "Act now - Antibiotics and Antimicrobial resistance in the environment", Brussels, 07 November 2018

11

Specific measures: agriculture and soil

VI. Fertilisers used in agriculture:

- Needs-based fertilization.
- Prohibit the **application of sewage sludge onto soil** and use sewage sludge for the recovery of phosphorous.
- Introduce the compulsory documentation of the antibiotics used in livestock stables and the co-selectors of zinc and copper used as animal feed.

VII. Soil:

- **Monitor the dissemination** of antibiotic residues and antibiotic-resistant bacteria at selected arable farmland locations throughout Germany.
- Define **precautionary limit values for antibiotics** as well as **zinc and copper** in the soil.

 $Workshop \ "Act now - Antibiotics \ and \ Antimicrobial \ resistance \ in \ the \ environment", \ Brussels, \ 07 \ November \ 2018$

2

Take home messages I

Environment

- · we have to distinguish between antibiotics and AMR in the environment
- antibiotics in the environment effect non-target organisms (e.g. plants, algae)
- as a consequence the equilibrium of the ecosystem is disturbed
- environmental entry paths are often identical for antibiotics and AMR
- the role of the different affected environmental compartments for AMRs is not yet clear

Take home messages II

Environment & health

- · even low concentrations of antibiotics can encourage AMR development
- the role of the environment as a reservoir for AMR needs consideration
- · transfer of AMR via drinking water consumption is unlikely
- antibiotics and AMR spreading have to be considered within the discussions of water-reuse in Europe
- · AMR 'import' from countries with high antibiotic production needs observation
- Environment plays an important role in relation to AMR
- We should not wait for more data
 - \rightarrow it is important to act now, also at the legislation level

Workshop "Act now - Antibiotics and Antimicrobial resistance in the environment", Brussels, 07 November 2018 14

