

Insights from the scientific debate on the climate-resource-nexus

Overview of findings of ICARE literature review

ICARE Online Seminar 29 September 2020 Mandy Hinzmann

Aim of the literature review

- Get an overview of the recent scientific discussion
- How are interactions between climate action & resource conservation described?
 - Synergies?
 - Trade-offs?
- Identify key issues in the scientific debate

→ Findings will support further ICARE project work (particularly qualitative cause-effect model)

ecologic.eu

Approach

Time restriction: 2010 – mid 2019

Literature search

 ScienceDirect, library portal Primo (FU Berlin), Google Scholar & snowball approach

2 Criteria:

- Both climate & resource protection described?
- Relationship between both described?

Long list

About 50 publications

wide range of sectors, author teams & geographical regions **Short list**

• 32 publications

Who is investigating the resource-climate nexus?

- Mainly authors from industrialised countries
- Relevant supranational institutions: OECD, IRP, JRC

Results: 3 Clusters

a) Resource demand for climate-friendly technologies

- Trade-off between climate and resource policy
- Focus on transforming the energy system
 - b) Greenhouse gas savings through resource efficiency

- Synergies, untapped potential
- Focus on industrial material efficiency
- c) Links between Circular Economy & climate protection

- Synergies, untapped potential
- Focus on the entire life cycle (including waste management)

ecologic.eu

Cluster a

Resource demand for climate-friendly technologies

- Studies look at the transformation of the energy sector on a large scale (global, EU or country level)
- scenario analysis and modelling
- mostly focus on the electricity & mobility sector

Conflicting goals:

- climate-friendly restructuring of the energy sector leads to increased resource consumption
 - Especially for metals
 - This could lead to raw material shortages

ecologic.eu

Cluster a

Central question: Could raw material shortages prevent the transformation of the energy system?

Disagreement in the literature

Material requirements are "manageable" (Hertwich et al. 2015); copper supply could become a concern

Special metals will not suffice to realise a global energy transition.

(Grandell et al. 2016)

Most critical: silver, followed by tellurium, indium, dysprosium, lanthanum, cobalt, platinum and ruthenium

Feasible, but:
"Resource supply
disruptions could become
more likely in the future"
(Koning et al. 2018)

"The diffusion of solar power and next-generation vehicles may be hindered by resource depletion" (Watari et al. 2018)
Critical: indium, tellurium, silver, lithium, nickel, platinum

ecologic.eu

Possible solutions are discussed

- Recycling
- substitution of materials or technologies
- increasing the efficiency of raw materials
- increase of extraction rates
- exploration of new raw material deposits

Greenhouse gas savings through resource efficiency

- Motivation of the studies: research gap
 - How do resource or material efficiency approaches contribute to reducing GHG emissions?
- scenario analysis and modelling
- Diverse sectors: electricity, construction, mobility, agriculture, electronics

Synergies:

- Great potential for resource and GHG savings, if climate & resource policy are linked and integrated
 - varies from region to region
 - depends on materials & sectors

ecologic.eu

Common messages:

- Business-as-usual would have devastating effects
 - climate targets would not be met
- Key issue: rebound effect
 - increased resource efficiency can affect quantities & prices of resources
- The combination of resource efficiency & climate protection scenarios yields the best results
 - better than climate protection alone

ecologic.eu

Possible solutions are discussed

- Joint effort of climate & resource policy
 - policy mixes
- Introducing measures to counteract rebound effects
 - Resource extraction taxes
 - Taxation of GHG

ecol

Cluster c Links between Circular Economy & climate protection

- Basic assumption of the studies: Circular Economy strategies do not only conserve resources, but also have the potential to reduce GHG emissions
- focus on specific economic sectors (e.g. the building sector), materials (e.g. metals) or strategies (e.g. re-use)

Synergies:

- Overall large untapped potential seen
 - savings of resources and GHG along the entire value chain
 - varies from material to material

ecologic.eu

Cluster C

Links between Circular Economy & climate protection

- Limitations of CE approaches:
 - Technical limits on re-use and recycling
 - Trade-Offs between material input in the production & energy consumption in the use phase
- Areas with particularly high potential:
 - use of secondary materials in the construction sector
 - more widespread use of recycling (better separation of waste streams as a basic requirement)

Summary of key findings

- Overall little research has been conducted to illuminate the interactions between resource conservation & climate protection
 - Various uncertainties remain
- Broad topic; can be investigated from many angles
- Overall, the selected publications give strong support for
 - policy mixes addressing both climate & resource protection
 - Re-use, recycling & the use of secondary materials as a way to save both resources & GHG emissions
- There are trade-offs which require political attention

Thanks! Any more Questions?

Mandy Hinzmann @ecologic.eu

Ecologic Institute

Pfalzburger Str. 43/44 10717 Berlin Germany

Tel. +49 (30) 86880-0

ecologic.eu