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Context

Mitigation of greenhouse gas emissions globally
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O Renewables 30% (35%) @ CCS 13% (14%)
m Power generation efficiency and fuel switching 1% m End-use fuel switching 10% (5%)
m End-use fuel and electricity efficiency 38% (40%) B Nuclear 8% (6%)

*RTS takes into account existing energy- and climate-related commitments by countries, including Nationally Determined Contributions pledged under the Paris Agreement.
International Energy Agency (2016) Energy Technology Perspectives 2016 — Towards Sustainable Urban Energy Systems
International Energy Agency (2017) Energy Technology. Perspectives 2017 — Catalysing Energy Technology Transformations



Context

At the European level

POwe r iS th e key Figure 4: Sectoral GHG reductions, focus on energy system emissions
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“Stepping up Europe’s 2030 climate ambition”, published 17.09.2020 https://ec.europa.eu/clima/sites/clima/files/eu-climate-action/docs/impact_en.pdf
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Greenhouse gas emissions of electricity technologies (1/2)
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Greenhouse gas emissions of electricity technologies (2/2)
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Context

The question of co-benefits

» Climate change mitigation strategies have
consequences over the whole
environmental (and more) spectrum

* In policy design it is key, through a
comprehensive “due diligence” exercise, to
identify

— ...the trade-offs, impacts that will increase
by adopting the strategies
— ...the co-benefits, impacts that will

decrease together with greenhouse gas
emissions, and other kinds of benefits

Watts, N., Adger, W. N., Agnolucci, P., Blackstock, J., Byass, P., Cai, W., ... & Cox, P. M.
(2015). Health and climate change: policy responses to protect public health. The Lancet.
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Figure 11: Frequently cited co-benefits of major mitigation techniques

Red arrows between a mitigation technology and an effect indicate that the technology will increase the effect; green arrows indicate an opposite trend.
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Assessment approach, and method

Life cycle assessment

2 ¢/ - Coaland... O - Damage on human health v - Extraction of raw materials,
v.:; ‘oY ° ---9as with and without CO, S particulate matter, 8 - Fuel supply chain,
= O| captureand storage (CCS), @) human toxicity... Q « Production of power plants,
g g « Photovoltaic power, % Damage on ecosystems % - Transportation
"0 | - Concentrated solar power, U . ecotoxicity, w  Operation,
GCJ § - Hydropower, v - eutrophication, % « Maintenance,
= « Geothermal, g_ . acidification... v + Decommissioning.
« Wind power, £ - Resource use o
+ + Nuclear, - - iron, copper, aluminium, g
- + Biopower. cement, |

- energy, water and land
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What are the environmental, health and resource use implications of a
massive expansion of low-carbon electricity?

A 5MW offshore wind
turbine requires
1200 tons of steel

350 000 such wind

turbines would be

required to provide
12% electricity in 2050
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Technology summary

Wind power

Resources

« Increased consumption of bulk metals (+=)
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Technology summary

Solar photovoltaics

Resources

- High metal use (balance of system, module, +=)
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irstsymbo
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Technology summary

Concentrating solar power
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Technology summary
Hydropower

Resources

- Water use (evaporation, +-)
- High land use for reservoirs (+=)
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(+) high agreement among studies (=) moderate agreement (-) low agreement
Second symbol
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Technology summary

Coal and natural gas power, with CO, capture and storage

©Reuters
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Comparative results

Climate

Logarithmic y-axis!

“2030"and “2050” include
economy-wide changes
(decarbonization, energy
efficiency) following the IEA
BLUE Map (2°C) scenario

Highlights

e (CCS does not remove all
lifecycle emissions

* Wide variability of
hydropower (each
reservoir is unique)

* Future emissions per kWh
decrease because of
technology improvement:
but also decarbonization
of the economy

Figure 1: Life-cycle GHG emissions of different energy technologies, in gCO2e /kWh, reflecting application of the technology in

Europe™.
The numbers for future years reflect a reduction of emissions expected due to technical progress and the reduced emissions in the
production of equipment following the implementation of a mitigation scenario.
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Comparative results

Resources (materials and non-renewable primary energy)

Figure 5: Bulk material and non-renewable energy requirements per unit power produced.®

Fossil technologies have high cumulative non-renewable energy demand (CED) and low bulk material requirements.

Linear y-axis

Left: Bulk material demand

Right: CED (cumulative energy

demand)
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Scenario comparison
Assessing global pathways

Environmental and resource
implications of electricity generation
following the IEA BLUE Map scenario

addressing impacts from the indicated
power sources

instead of the IEA Baseline scenario,l

Left = absolute values
Right = % variation from 2007

Coal phaseout is a Material

priority — multiple requirements are
co-benefits a clear trade-off

Hertwich EG, Gibon T, Bouman EA, et al (2015) Integrated life-cycle assessment of electricity-supply scenarios confirms global
environmental benefit of low-carbon technologies. Proc Natl Acad Sci U S A 112:6277-82

The Benefits, Risks and Trade-offs «

Energy and material requirements
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More scenario comparison!
AsseSSi ng gIObaI pat hways Cumulative 2011-2050 power sector emissions limited to 240 GtCO,.

Wind and solar power  Nuclear phase-out, no
limited to 10% CCS in the power sector

Upscaling environmental
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(from 20 PWh to ~50 PWh in 2050)
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... & Hertwich E. G. (2019). Environmental co-benefits and adverse side-

effects of alternative power sector decarbonization strategies. Nature communications, 10(1), 1-13.

Luderer, G., Pehl, M., Arvesen, A., Gibon, T., Bodirsky, B. L., de Boer, H. S.,



More scenario comparison!
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Discussion

Forecasting technology deployment

Scenarios # forecasts g7 .
¥ 201 ','1’. ‘n"._.

0 . . . .
1995 2000 2005 2010 2015

Overly optimistic by o @

= energy science

. . =#- Real capacity g principles, technologies, and impacts
assuming aggressive e : LB
P . . . ;‘3 102 - IEA § 102 John Andrews & Nick Jelley
mitigation policies... 7 i Ty

The IEA BLUE map scenario (IEA-ETP-2008/2010) is an optimistic and aggressive sce-
nario that now looks unlikely to be achieved given the slow pace of change and that much of [

...0r pESSI MIStIC by the present infrastructure will still be in use in 2050. The scenario assumes rapid global adop-
u nderestl matl ng tion of a wide-ranging series of carbon-reduction measures. On the supply side, CCS of both

t th f coal and gas plants, together with improved efficiency, generation III and IV nuclear, solar PV
Ca paCI y g row O and CSTP, and wind all contribute to the decarbonization of the power sector. Biomass and

Va rIOUS tECh N OlOgIeS biofuels could contribute in the industrial, air, and shipping sectors, but emissions associated N
(PV, W| N d .. .) with change of land use need to be avoided.

capacity by the IEA, Greenpeace and WBGU compared with an extrapolation ot the his
shown are results from the scenario comparison projects LIMITS and AMPERE on low
pathways consistent with limiting warming to below 2 °C. Differences between IEA and
10in 2015. See Methods for data sources.

Creutzig, F., Agoston, P., Goldschmidt, J. C., Luderer, G., Nemet, G., & Pietzcker, R. C. (2017). The underestimated potential of solar energy to mitigate climate change. Nature Energy, 2(9) ‘
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Discussion

Limitations - LCA method

* Generic technology data, only with
regional adjustments

* Generic characterization factors (no time
or regional differentiation)

* No consensus on material criticality
indicators, especially for newer
materials (neodymium, lithium, cobalt,
thin-film PV elements...)

« Some elements even absent from life
cycle databases

Critical Raw Materials list in ecoinvent 2.2?  in ecoinvent 3.6? characterized in
(2020) (2010) (2019) EF3.0? (2020)*
Antimony no yes yes
Baryte yes yes no
Beryllium no yes yes
Bismuth no yes yes
Borax yes yes no
Cobalt yes yes yes
Coal yes yes as a fossil resource
Fluorspar yes yes no
Gallium yes yes yes
Germanium no yes yes
Hafnium no yes no
Heavy Rare Earth Elements 2/10 10/10 1/10
Light Rare Earth Elements 2/6 5/6 0/6
Indium yes yes yes
Magnesium yes yes yes
Natural Graphite yes yes no
Natural Rubber no no no
Niobium no yes yes
Platinum Group Metals yes yes partly
Phosphate rock no no no
Phosphorus yes yes yes
Scandium no yes no
Silicon yes yes yes
Tantalum yes yes yes
Tungsten no yes yes
VVanadium no yes yes
Bauxite yes yes yes
Lithium yes yes yes
Titanium yes yes yes
Strontium no yes yes

Green Energy Choices

The Benefits, Risks and Trade-offs of Low-Carbon Technologies for Electricity Production

*Depletion model based on use-to-availability (ultimate reserves) ratio, substitutability only for fossils.



Discussion

Limitations - scenario modelling

Resource-economy feedback: mineral
resource availability does not

Techno-economic

influence technology choice in i,
scenarios decision criteria

— Intersectoral competition
— Geopolitical tensions
— Lower-grade mining ore increasing

environmental impacts
Resource depletion
— Co-dependency of metals (Fe: rare

earths, Al: Ga, Cu: Co, Rh, Mo, Te, Se...)

— Resource depletion
— Supply disruption %

Boubault, A., & Maizi, N. (2019). Devising mineral resource supply pathways to a low-carbon electricity generation by 2100. Resources, 8(1), 33.

:> Technology choices
N

Environmental impacts

24 Green Energy Choices
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Outlook

Towards finer assessments of material criticality
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Lebre, E., Stringer, M., Svobodova, K. et al. The social and environmental complexities of extracting energy transition metals. Nature Communications 11, 4823 (2020). https://doi.org/10.1038/541467-020-18661-9
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Peak demand from low-carbon tech.
Current global production

(Indicative of supply chain pressure)

Corresponding mined ore tonnage

(Indicative of scale of potential impact)
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Thank you! Questions?

This research work
was carried out at

@ NTNU

Norwegian University of
Science and Technology

thomas.gibon@list.lu
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For more information please visit:
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Semi-quantitative representation of flows of raw materials and their current supply risks to the nine

Integrate more sectors selected technologies and three sectors
(European Commission 2020 https://ec.europa.eu/docsroom/documents/42882)

Technologies
Materials
More complete Supply Risk
picture Of the (sorted largest to smallest)
situation
Consider
interactions —

. . Cobalt
(vehicle-to-grid, IT I o
in energy
management...)
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What are the environmental, health and resource use implications of a
massive expansion of low-carbon electricity?

A typical photovoltaic
power plant produces
0.3 kWh

per m?
per day
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Comparative results

Human health

Linear y-axis

Figure 2: Human health impact in disability adjusted life years (DALY) per 1TWh of electricity generated, for Europe 2010 .
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Comparative results

Ecosystems

Ll near y'aX| S Figure 3: Ecosystem impacts in species-year affected per 1000 TWh of electricity following different damage pathways,
reflecting Europe 2010 .
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Completing the picture

+ biomass and nuclear, human health & ecosystem damage

1.5 10
Air pollution
Climate change
1.0 lonising radiation
£ Toxic.:ity o
* 11 technology groups, composed by 37 systems E oo (5010)
o Variations captured: gg ' Time variation (2010-2050) |
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* Endpoint scores show high variation for
— Biomass 1.0
(regional: yield, system: energy crop vs. residues, time:
increasing efficiency),

— Coal . @ Eutrophication, acicification
(system, time: increasing efficiency), z wsfortation |
— Hydro - 2010)
(regional, system: high variation in direct emissions and 5% 10)
transportation), %g 1-2050)
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What are the environmental, health and resource use implications of a
massive expansion of low-carbon electricity?

3.2 million premature

deaths from particulate
matter emissions
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