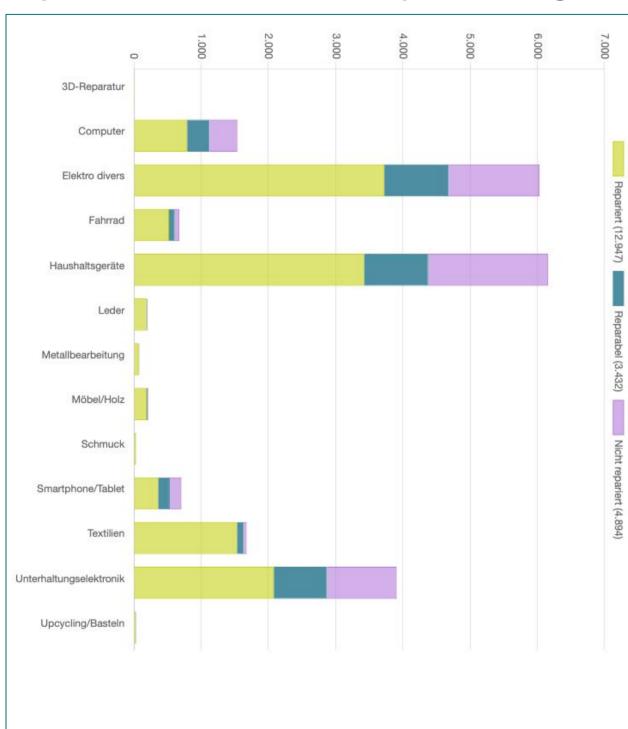


Re-Use Berlin Fachdialog Gebraucht statt neu spart CO_2 – Berechnung und Kommunikation von Einsparpotenzialen

Ein lebenszyklus-analytischer Blick auf Reparatur – ökologische Einsparpotentiale und Reboundeffekte

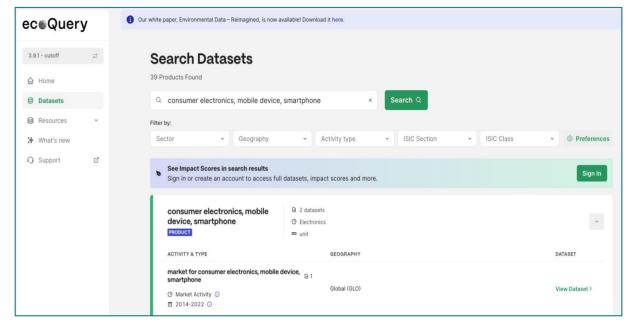
Dr. Manuel Bickel Co-Leiter Forschungsbereich Produkt- und Konsumsysteme


Jan-Luis Dietz wissenschaftliche Hilfskraft

Grobabschätzung Einspareffekte Reparatur-Initiativen

Reparatur-Initiativen: Anzahl reparierter Gegenstände der Reparatur-Initiativen

Beispielhafter Rechenweg - Smartwatch Anwendung auf 52 Prozessdatensätze


- L. Zuordnung Prozessdatensatz aus ecoinvent, der Materialzusammensetzung möglichst gut widerspiegelt (https://ecoquery.ecoinvent.org/3.9.1/cutoff/search)
 - -> "consumer electronics production, mobile device, smartphone"
- Ermittlung Carbon und Material Footprint für Prozess mittels LCA Software und Datenbank
- Skalierung der Impacts auf geschätzte Masse des Produktes und Massenverhältnis zu Masse des ecoinvent Prozessees

Smartphones: 163,45 g

Smartwatch: 40 g

Massenverhältnis: 0,245

3. Multiplikation CF und MF Werte Smartphones mit Massenverhältnis: CF und MF Smartwatch

Bildquelle: https://ecoquery.ecoinvent.org/3.9.1/cutoff/

1				2		3			4	
Oberkategorie	Unterkategorie	Interne Kategorie	Ecoinvent Prozess (Proxy)	CF Ecoinvent	MF Ecoinvent	Masse Ecoinvent [Kg]	Masse geschätzt [Kg]	Massenverhältnis	CF	MF
Computer	Smartwatch	Medien- und Kommunikationsgerät	consumer electronics production, mobile device, smartphone	39	151	0,16	0,04	0,24	9,51	37

Annahme Einsparpotential und am häufigsten verwendeten proxy-Daten

Annahme zum Einsparpotential durch Reparatur:

 durch die Reparatur verlängert sich die durchschnittliche Lebensdauer des reparierten Gerätes pauschal um mindestens 30%

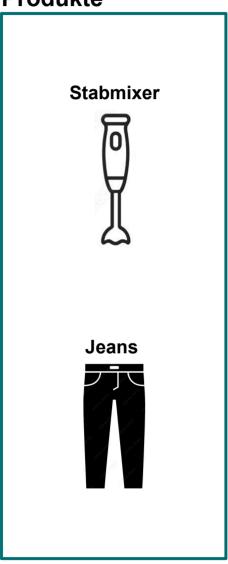
Proxies // Materialintensitäten (in kg) und Treibhauspotentiale (in kg CO2e)

- Router für Elektronikgeräte mit Gehäuse
 - Router (287,23 kg; 15,09 kg CO2e)
 - Bewegungsmelder (191,49 kg; 10,06 kg CO2e)
 - Küchenradio (478,72 kg; 25,15 kg CO2e)
- elektronische Säge für verschiedene **mechanische Elektrogeräte**
 - Akkuschrauber (31,49; 9,38 kg CO2e)
 - Schleifer (41,99; 12,51 kg CO2e)
 - Stichsäge (52,49; 15,64 kg CO2e)
 - unspezifische Metallmaschine für verschiedene metallene Geräte
 - Wagenheber (489,14; 41,98 kg CO2e)
 - Locher (18,34; 1,57 kg CO2e)
 - o Wasserhahn (61,14; 5,25 kg CO2e)
 - Holzmöbels für verschiedene Holzgegenstände
 - o Bilderrahmen (7,43; 2,02 kg CO2e)
 - Servierwagen (37,14; 10,08 kg CO2e)
 - o Kiste (14,86; 4,03 kg CO2e)
- Polyethylen für verschiedene **Plastikgegenstände**
 - o Globus (5,53; 3,8 kg CO2e)
 - Action Figur (0,55; 0,38 kg CO2e)
 - Gießkanne (1,38; 0,95 kg CO2e)

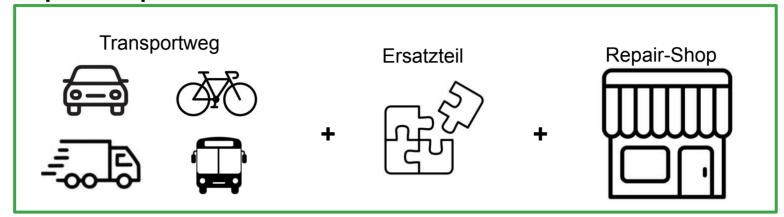
Projekt: "Sustainability by Design – Innovation und Transfer an der Schnittstelle von Nachhaltigkeitsforschung und Design"

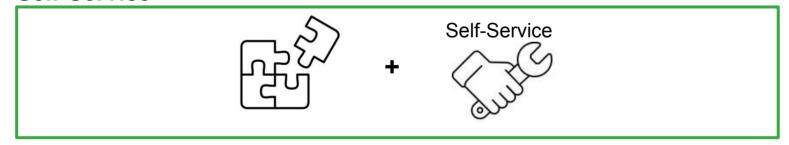
Überlegungen zu ökologischen Einsparpotentialen und Reboundeffekten im Kontext von Reparatur

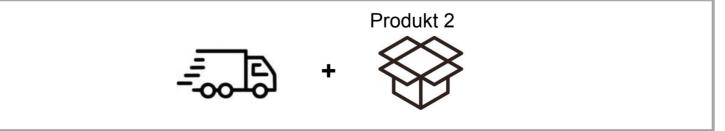
Gefördert durch:



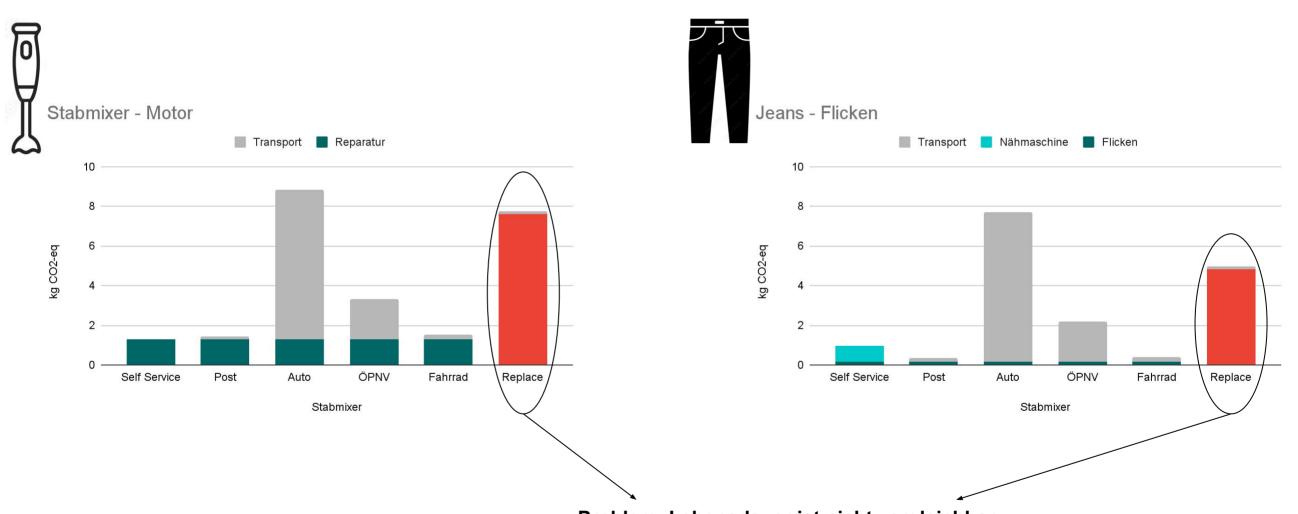
Ökologische Bewertungsmethodik


Beschreibung der Szenarien


Produkte


Repair-Shop

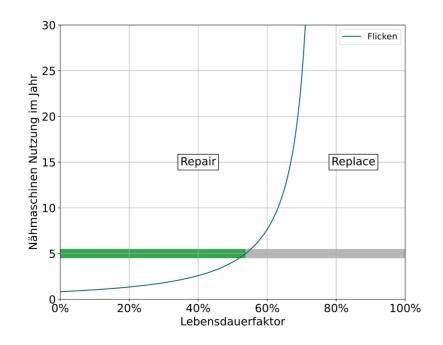
Self-Service

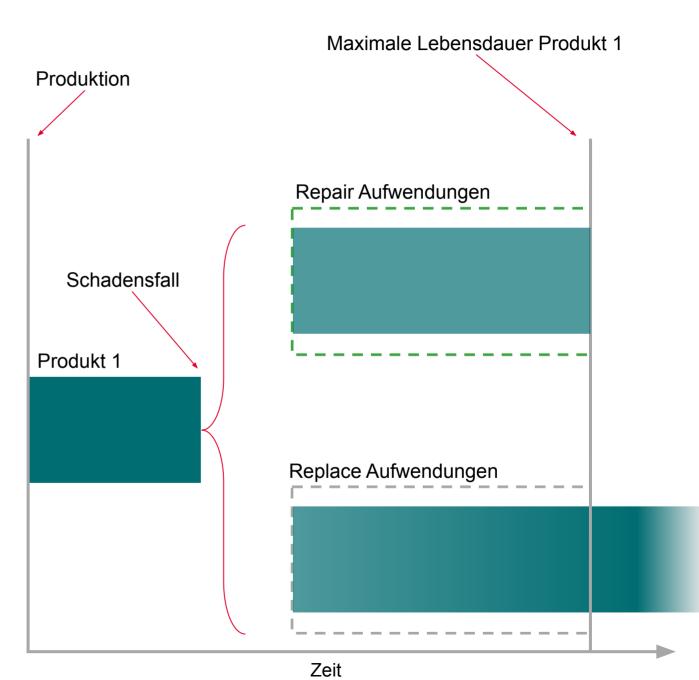

Replace

Ökologische Bewertungsmethodik

Auswertung und Probleme

Problem: Lebensdauer ist nicht vergleichbar. Wie können die Szenarien besser verglichen werden?

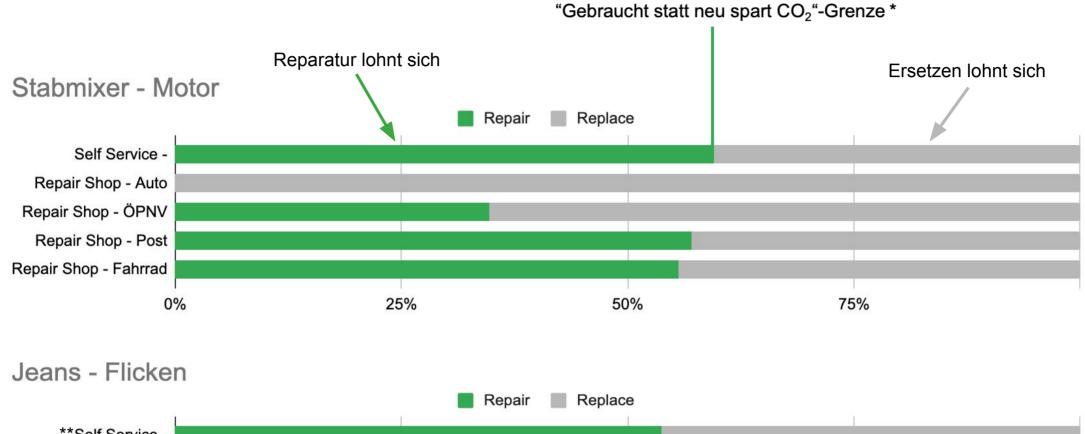

Ökologische Bewertungsmethodik

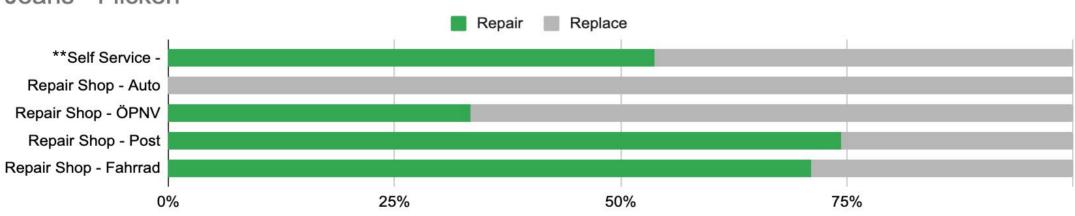

Berechnung des Lebensdauerfaktors

Wuppertal Institut

- Jedes Produkt hat eine maximale Lebensdauer
- Ersatz verschiebt die Lebensdauer → Aufwand wird anteilig gerechnet
- Der Lebensdauerfaktor zeigt den Zeitpunkt auf an dem sich eine Reparatur gegenüber einem Ersetzen noch lohnt

$$Lebens dauer faktor = 1 - \sqrt{\frac{Repair\ Aufwendung}{Replace\ Aufwendung}}$$





Auswertung verschiedener Szenarien

Fahr nicht mit dem Auto zum Repair-Café

Eigene Darstellung

^{*} Aufwendung basierend auf dem GWP

^{**5-}fache Nutzung der Nähmaschine im Jahr

Schlussfolgerungen

Schlussfolgerungen

- Potentiale der existierenden professionellen Logistikinfrastrukturen für Reparatur nutzen
- **Werkzeug-Sharing/Vermietung** statt voll sporadisch genutzte Hobbywerkstätten (abhängig vom individuelln "Reparaturtyp")
- Weiterentwicklung der Methoden zur Entscheidungsunterstützung
 - hier z.B. nicht berücksichtigt Effekt höher Energieeffizienz von Neugeräten
- Kollaboration entlang der Wertschöpfungskette mit digitaler Unterstützung (DPP, etc.) für
 - o bessere **Daten zu Lebensdauern** von Produkten
 - Details zu reparierten Produkten und Reparaturprozessen (auch Gründe für Misserfolg)
 - Entwicklung professioneller und differenzierter Reparatursysteme
- Nachhaltiges Design ermöglicht Reparaturen mit geringem Aufwand selbst durchzuführen und spart Transportwege

manuel.bickel@wupperinst.org

Vielen Dank!

