

Washington DC

Effective MRVA for Emissions Trading in the Power Sector – Experiences from the EU

Benjamin Görlach Ecologic Institute

EU-China Exchange on Challenges and Best Practices in ETS implementation Beijing, China November 21, 2012

About Ecologic Institute

- Who we are
 - A private, not-for profit think tank for applied environmental research, policy analysis and consultancy
 - Founded 1995 in Berlin, Germany
 - Offices in Berlin, Brussels, Vienna,
 Washington DC and San Mateo CA
 - Currently 125+ employees
 - Ranked 6th among Environmental Think Tanks in the 2010 and 2011
 Global Think Tank Index of the University of Pennsylvania

- Who we work with
 - International Organisations (UNEP, UNFCCC, CBD, World Bank, OECD)
 - European Union (European
 Commission, European Parliament,
 European Environment Agency)
 - National Parliaments and government agencies (e.g. German Environment Ministry, UK DECC, US EPA)
 - Non-Governmental Organisations
 - Educational Institutions
 - Foundations, ...

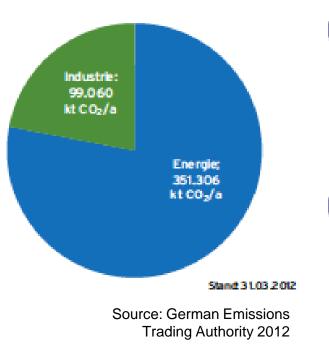
MRV – just a "technical" issue?

- Less exciting than the political topics cap-setting and allocation, often overlooked in political discussions
- MRV nonetheless essential for the functioning of an ETS without robust and reliable MRV, emissions trading will fail
- Market for emission allowances is a *politically created* market allowance is a traded product that has its value only because of regulation. Hence the need for rigorous accounting.

Why is robust MRV so important?

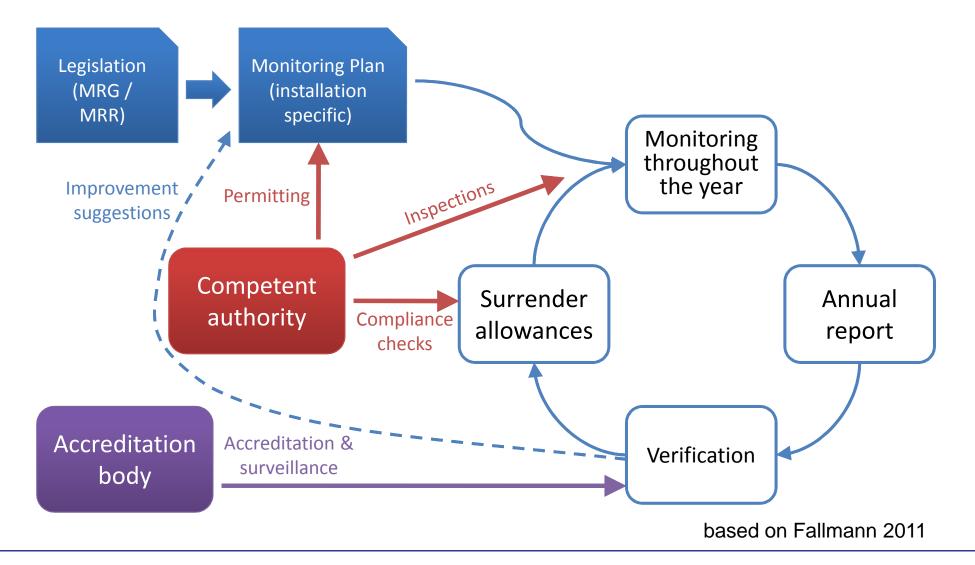
- Create and maintain trust in the emissions market
- Prevent fraud or cheating fairness issue
- Give reliable information to the regulator are we meeting our targets?
- Give information to companies where are we in terms of compliance?
- Give information to the market signaling scarcity
- Precondition for linking different schemes (internationally, but also domestically)
- ... solid, robust MRV (should be) everybody's own best interest.

Monitoring in the Power Sector – a good starting position


- Some inherent advantages for MRV in the power sector:
 - Relatively few streams to monitor
 - Fuel inputs are often traded, and therefore measured
 - Fuel cost often a high share of total operating cost, therefore interest in managing fuel consumption
 - Cost of MRV not disproportionate in relation to overalloperating cost
 - Some data available from pre-existing regulation (e.g. SO₂)
 - Reporting structures, responsibilites available from other regulation
 - Concentrated point sources not too many actors

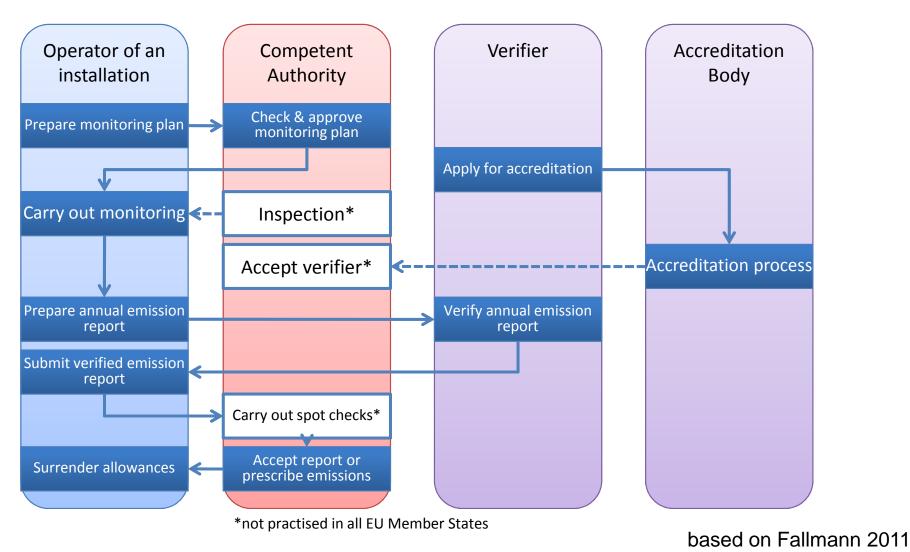
Share of Power Sector in Total Emissions

- Germany: energy accounts for 2/3 of installations, but for almost 80% of all ETS emissions (351 out of 450 Mt)
- Large number of energy installations (1,100), but smaller number of companies involved: top five utilities account for ~250 Mt)
- Average emissions at 319,000 tons/a in energy,
 183,000 t/a in industry



Ecologic Institute Berlin Brussels Vienna

Washington DC


Elements of MRV(A) – the compliance cycle

Roles and responsibilities in the MRV(A) process

Basis for monitoring: the Monitoring Plan

- Operator has to draft a Monitoring Plan (MP): a detailed, complete and transparent documentation of the monitoring methodology of the installation, describing:
 - configuration and complexity of the installation/facility, its activities, emission sources, source streams and their location etc.
 - how the responsibilities in the installation for the monitoring and reporting of emissions are managed and assigned
 - procedure for evaluation of the MP, its functioning and possibilities for improvement
 - control activities of an operator to manage the risks of misreporting, i.e. mistakes in the monitoring and the flow of data

based on Deckers 2012

Basis for monitoring: the Monitoring Plan (II)

- In particular, the Monitoring Plan shall describe:
 - monitoring methodology (approach) per emission source or source stream: calculation based approach or continuous emission measurements (CEMS)
 - measurement equipment, location and quality assurance (calibration etc.), the required level of accuracy (tier)
 - for calculation approach: how activity data are determined, how calculation factors are determined (e.g. default values or analysis)
 - for analysis of calculation factors: how the sampling in the installations is organised, etc.

Washington DC

Annual Emission Reports

- What has to be reported?
 - Amounts of fuels and materials consumed
 - Emission factors, net calorific value (NCV), oxidation factor, biomass content
 - Resulting emissions
 - Information on uncertainties
- All elements reported on an annual basis
- Not reported: Production data

Methods to determine emissions

- Building block system in an effort to balance the costs of the process and the quality of the data, taking into account specific circumstances
- As far as possible, use available data and existing equipment
- Generally, the larger the emissions volume, the higher the quality requirement

Methods to determine emissions: the Tier approach

- Category B and C installations (> 50 kt CO₂/a) must meet highest tiers (defined in the activity-specific Annexes of the MRR)
- Category A installations (≤ 50 kt CO₂/a) must meet minimum tier requirements (defined in Annex V, Tab. 1)
- Small emitters (< 25 kt CO₂/a) must also meet the minimum tier requirements but can use additional monitoring simplifications (Art. 47)
- Lower tiers are allowed for minor and de-minimis source streams as well as for pure biomass fuels and for technical or economical reasons if approved by the regional regulator

Tiers related to Activity Data and Emission Factors

- Activity Data:
 - ► Tier 1: Uncertainty ±7.5%
 - ► Tier 2: Uncertainty ±5.0%
 - ▶ Tier 3: Uncertainty ±2.5%
 - ► Tier 4: Uncertainty ±1.5%
- Emission Factors:
 - Tier 1: IPCC standard factors
 - Tier 2: Standard factors from national inventories
 - Tier 3: Based on chemical analysis

Verification

- Goal is to create trust in the reported data through the opinion of an independent and competent body
- Under the EU ETS, this is carried out by a private entity
- Private verifier needs to be accredited
- Verifier assesses whether he can conclude with reasonable assurance
 - ► The data in the report are fairly stated (free from material misstatements)
 - The operator has complied with the approved monitoring plan
- Verifier shall also recommend improvements found during verification

Use of Information Technology in the MRV(A) process

- Reduces compliance costs, e.g. single data entries, automated reminders
- Can increase the transparency of the system
- Increases reliability of ETS data handling & processing
- Allows automatic timeliness and completeness checks
- Reduces the risk of transcription errors or human errors
- Enhances the capacity for reliable storage of data
- Offers potential for cost-effective data interrogation and analysis also for other purposes - e.g. verification, input to the national emission inventories and improved national statistics

Challenges for an effective and efficient MRV

- Trade-off between quality, cost and timeliness an impossible task?
- A ton must be a ton but different regulatory cultures exist in the 30 EU
 ETS countries
 - E.g. definition of an installation entire site, or individual units?
 - E.g. regular inspections at the installation, or emphasis on high-quality verification and supervision
- Common elements, standards, procedures needed to build up trust:
 - Transparency of the system rules
 - Existence of an effective control system

Ecologic Institute Berlin Brussels Vienna

Washington DC

Thank you for your attention

Benjamin Görlach

Ecologic Institute, Berlin benjamin.goerlach@ecologic.eu www.ecologic.eu