



# Experiences and future perspectives of biomethane in Germany from a regulatory perspective

Dr. Wolfgang Urban **Ecologic Institute** 

On secondment to the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety Division E I 5 – Solar Energy, Biomass, Geothermal Energy



#### Outline

- biomethane political targets, utilization priorities
- legal framework and incentive scheme
- biomethane challenges, future perspectives and conclusions from amendment of legal framework



#### Gov's Energy strategy: some "Energiewende" targets

|      | Climate                         |                          | ES             | Efficiency        |                                  |                                |
|------|---------------------------------|--------------------------|----------------|-------------------|----------------------------------|--------------------------------|
|      | GHG<br>reduction<br>(base 1990) | share<br>power<br>sector | share<br>total | primary<br>energy | energy<br>produc-<br>tivity      | building<br>refurbish-<br>ment |
| 2020 | - 40 %                          | > 35%                    | 18%            | - 20%             |                                  |                                |
| 2030 | - 55 %                          | 50%                      | 30%            |                   | yearly<br>improve-<br>ment<br>2% | rate<br>double<br>1% → 2%      |
| 2040 | - 70 %                          | 65%                      | 45%            |                   |                                  |                                |
| 2050 | - 80-95 %                       | 80%                      | 60%            | - 50%             |                                  |                                |

source: BMU 2010



Ecologic Institute Berlin Brussels Vienna Washington DC



#### How can biomethane contribute to achieve the targets?

- biogas potential based on energy crops, residues and waste materials
- contribution of biogas to climate protection (GHG reduction)
  - environmental impacts sustainable biomass supply
  - minimization of GHG-emissions along the value chain of biogas production
  - biogas utilization pathways
  - energy efficiency
  - assessment of biogas utilization pathways within in the whole bioenergy sector
- conclusions for amendment of incentives, laws and ordinances
  - fields of action within the different energy sectors?



Ecologic Institute Berlin Brussels

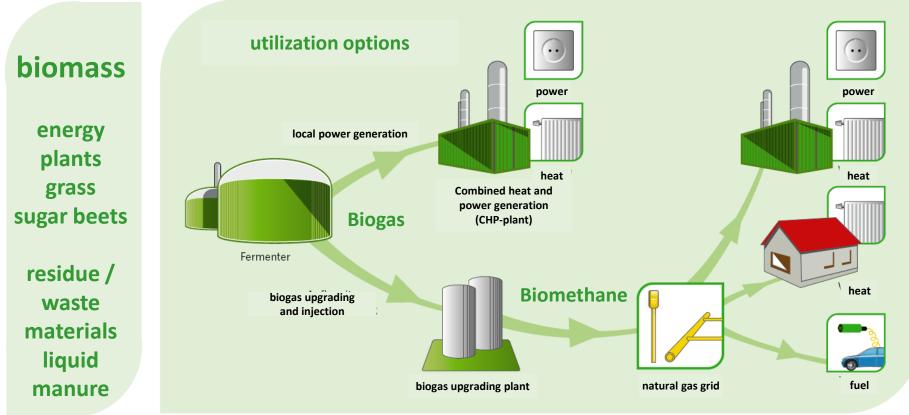
Washington DC

Vienna



## **Biomethane – contribution to climate protection**




- most flexible RES
- easy to store and to transport

What option is prior-ranking from

- economic
- ecologic
- social
- point of view?



#### **Biomethane – classification of utilization options**



source: AEE, www.unendlich-viel-energie.de; www.erdgas.info: Broschüre Bio-Erdgas – Umweltschonende Energie mit Zukunft





## contribution of biogas to meet the targets

- as a prerequisite to understand the german biogas strategy:
  - limitation of biomass resources, restrictions of biomass imports
  - high CFP of german power plant mix ruled by coal and nuclear power
  - heat supply in Germany governed by gas, oil, wood, distr. heating & CHP systems
  - optimal utilization of different biomass resources (e.g. wood chips for heat sector)
- top priority for biogas utilization: flexible power generation! Preferably CHP! followed by biomethane utilization within transport sector
- local power generation with heat utilization prior to biogas upgrading and feed-in into the gas grid from economic and ecologic considerations





# Biogas feed-in in Germany – legal framework and incentives



Berlin Brussels Vienna Washington DC



#### Incentive scheme for biomethane I

 Renewable Energy Sources Act (EEG): feed-in tariff system for power generation from RES



 Gas network access ordinance (GasNZV) and Gas network fee ordinance (GasNEV)



#### EEG: main driver for biomethane production in Germany





## **Incentive scheme for biomethane II**

#### • biomethane in transport sector

- biofuel quota act: biomethane can be charged to quota
- reduced energy tax for natural gas and biomethane use in vehicles

#### biomethane in heat sector

- Renewable Energy Sources Heat Act: obligation use of RES or high energy efficiency measurements in new buildings, e.g. biogas fired (micro-) CHP devices, wood firing, solar heating, thermal insulation of buildings, waste heat recovery etc.
- role model of public sector at building renovation: obligation use of RES and high energy efficiency measurements
- Biogas use: CHP-obligation



Washington DC

Berlin Brussels



## **Renewable Energy Sources Act (EEG) I**

- prior grid access for RES-power, technology specific feed-in tariff for each REStechnology guaranteed by law for 20 years, degression 2% p.y.
- indirect subsidy for biomethane feed-in via EEG
- EEG: feed-in tariff system for power generation of biogas / biomethane
- height of feed-in tariff in ct/kWh el dependant of
  - CHP-plant size or biogas plant size resp. between 6 14.3 ct/kWh
  - used biomasse resource (waste, energy crops, ecologic important materials)
  - bonus for biogas feed-in (3-2-1-0 ct/kWh in regard to upgrading plant capacity)



Washington DC

Berlin Brussels Vienna



### Renewable Energy Sources Act (EEG 2012) II

|                                      | EEG feed-in tariff in €ct/kWh el |                                      |                          |                              |                                                    |                                        |  |  |  |
|--------------------------------------|----------------------------------|--------------------------------------|--------------------------|------------------------------|----------------------------------------------------|----------------------------------------|--|--|--|
|                                      | k                                | piogas plants and s                  | biowaste<br>AD plants    |                              |                                                    |                                        |  |  |  |
|                                      |                                  | feedstock re                         | nuneration               |                              | recycling                                          |                                        |  |  |  |
| installed<br>power plant<br>capacity | base tariff                      | energy crops<br>tariff <sup>1)</sup> | eco tariff <sup>2)</sup> | biogas<br>upgrading<br>bonus | of solid<br>fermentation<br>residues <sup>5)</sup> | mini AD<br>plants for<br>liquid manure |  |  |  |
| [kW <sub>el</sub> ]                  | [€ct/kWh <sub>el</sub> ]         |                                      |                          |                              |                                                    |                                        |  |  |  |
| ≤ 75 <sup>4)</sup>                   |                                  |                                      |                          |                              |                                                    | 25 <sup>4)</sup>                       |  |  |  |
| ≤ 150                                | 14,3                             |                                      |                          | ≤ 700 Nm³/h: 3               |                                                    |                                        |  |  |  |
| ≤ 500                                | 12,3                             | 6                                    | 8                        | ≤ 1.000 Nm³/h: 2             | 16                                                 |                                        |  |  |  |
| ≤ 750                                | 11                               | 5                                    |                          | ≤ 1.400 Nm³/h: 1             |                                                    |                                        |  |  |  |
| ≤ 5.000                              | 11                               | 4                                    | 8 / 6 <sup>3)</sup>      | 5 1.400 NIII / II. 1         |                                                    |                                        |  |  |  |
| ≤ 20.000                             | 6                                | -                                    | -                        | -                            | 14                                                 | -                                      |  |  |  |

max. feed-in tariff for power from biomethane from energy crops 23-25 ct/kWh el or in gas equivalent appr. 9 ct/kWh for biomethane

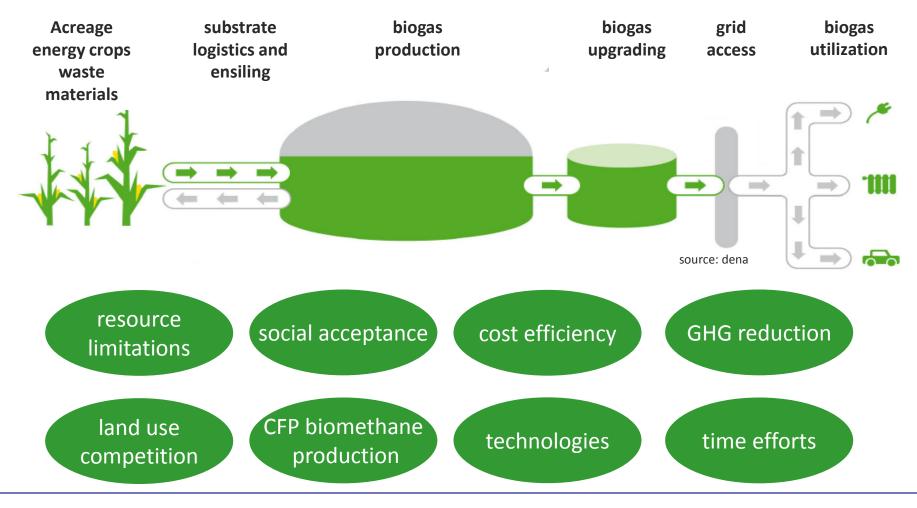




## Gas network access ordinance (GasNZV)

- Gas network access ordinance (GasNZV), renewed in 2008 and 2010
- prior grid access for biogas feed-in, point of access chosen by client refusal only in cases of technical impossibility or economic unreasonableness
- distribution of CAPEX between grid operator and grid access client 75% : 25%, capture at 250,000 €, grid operator fully responsible for OPEX
- Grid operators are allowed to allocate all biogas related costs to all gas customers (grid fees)
- permanent availability of the grid connection of at least 96 %
- reduced fees for energy balancing (1€/MWh) and credit for avoided mains operation (7€/MWh)

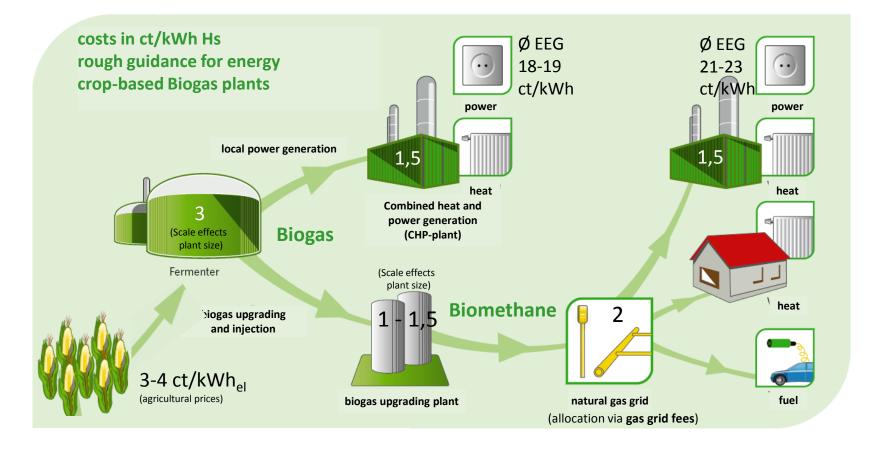





# Biogas feed-in in Germany – challenges and future perspectives






## Challenges along the value chain





Berlin Brussels Vienna Washington DC

## **Biomethane provision – cost efficiency along value chain**





Washington DC

Berlin Brussels Vienna



### **Grid** access – potential for cost reduction?

- scale effects very dominant due to high fixed CAPEX independent from feed-in capacity
- election grid access point crucial (in regard of gas quality, grid level, pressure...) for costs
- HV compliance accord. to DVGW G 685 alternative processes of HV adjustment necessary

#### 2,5 capital costs aux. power consumption spec. grid access costs ct/kWh Hs 2,0 odorization HV-/V-measurement compression costs (power) HV adjustment with LPG 1,5 1,0 0,5 0,0 125 m<sup>3</sup>/h 350 m<sup>3</sup>/h 700 m<sup>3</sup>/h

#### feed-in capacity in Nm<sup>3</sup>/h (base biomethane)

#### calculation example

total specific costs of grid access (CAPEX incl. OPEX), feed-in in HP-grid 16 bar, H-Gas with HV 11,3 kWh/Nm<sup>3</sup> Hs, HV adjustment with LPG, pipe to grid 1,5 km, compressor 100% redundancy



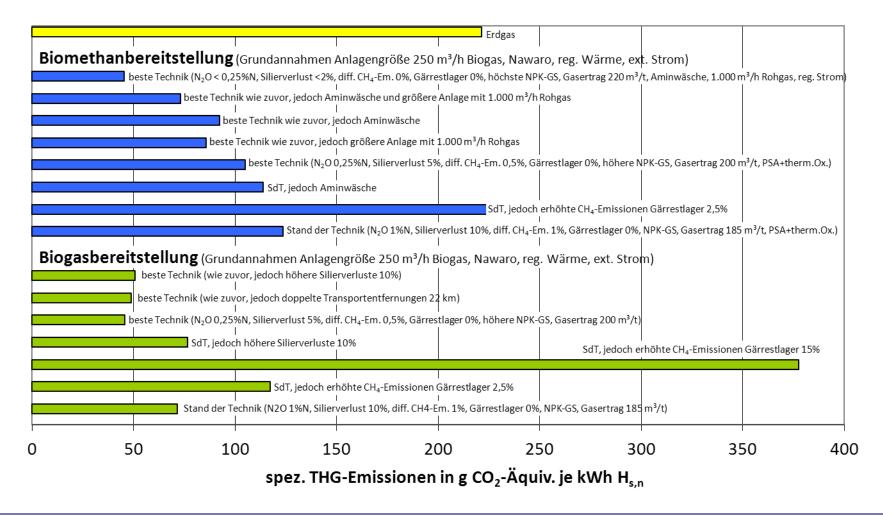
Brussels Vienna

Washington DC

## Challenges - grid access

#### • time schedule of grid access realisation

- considerable delays, duration in some cases above 30 month, restrictive action agieren of grid operators, reason: loss of CAPEX- from biogas client
- costs of grid access (CAPEX) and biogas feed-in (OPEX)
  - CAPEX: level of redundancy, quality of technical equipment don't comply with demand of biogas feed-in,
  - individual planning: standardization as a key of cost reduction
  - OPEX: evaluation of different measurements of HV adjustment
- technical challenges
  - alternatives for HV adjustment without LPG (CA-HV-reco???,)
  - deodorization, feeding back
  - necessity of simpler standards and measuring technologies




Washington DC

Berlin Brussels Vienna



## Challenges in regard to sustainability





Washington DC

Vienna



## **Conclusions I**

- Biogas is a limited ressource
  - Land use competition: energy crops vs. food vs. animal feed vs. other energetic or material utilization of biomass, sustainability!
  - residues and waste materials: potential vs. activation costs
  - biomass import: sustainability! avoidance of new dependancies, cost efficiency

#### obligation to climate- and energy efficient utilization!

- GHG reduction impact dependent on utilization path
  - expansion of CHP sector in Germany
  - utilization of biomethane must mandatorily be more energy efficient and climate friendly than state of the art (local power generation)
  - lowest GHG reduction in boilers

#### biogas upgrading and feed-in is not an end in itself!





#### cost- and energy efficiency

high costs for upgrading and injection needs to be justified
Incentives for use in pathways with high energy efficiency and GHG savings

#### sustainable supply of biomass

- minimize GHG-Emissions throughout biogas production chain (fertilization, biomass conservation, reduction CH<sub>4</sub>-emissions)
- minimize harmful environmental impacts (soil erosion, water protection, landscape protection, Emission reduction...)
- strengthen utilization of residues and waste material potential and limitat energy crops cultivation, minimize land use competition and biomass imports
- joker for system integration of RES: storage capacity of biogas, flexibility of CHP-plants





## Thank you for your attention!

Dr.-Ing. Wolfgang Urban

Ecologic Institute, Pfalzburger Str. 43-44, 10717 Berlin www.ecologic.eu

On secondment to the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety Division E I 5 – Solar Energy, Biomass, Geothermal Energy Tel.: + 49 30 18305 3627 e-mail: wolfgang.urban@bmu.bund.de