

Cost-benefit evaluation of adaptation measures in Germany: lessons learnt

Jenny Tröltzsch

29 January 2013

ZAMG, Vienna

Inhalt

- Project Overview
- Structure/ Methodology

www.ecologic.eu

- Case Studies
- Results/ Summary

Project overview: "Costs and benefits of adaptation to climate change"

- Research project for German Federal Environmental Agency (UBA)
- Duration: 28 months (Nov. 2009 Febr. 2012)
- Lead: Ecologic Institute (Berlin), Partners: INFRAS (Zuerich), Fraunhofer ISI (Karlsruhe)
- Research Questions:
 - How can cost-benefit analysis support the prioritisation and selection of adaptation measures?
 - ► How is the database in Germany and which recommendations can be formulated based on the existing data?

Structure of project

- Literature analysis on state of the art: main climate risks, sectoral damages and adaptation costs
- Development of criteria set for comparison and evaluation of different adaptation measures
- Assessment of 25 selected adaptation measures in different sectors based on the criteria set (mainly based on literature and small number of expert interviews)
- Detailled analysis of three case studies (measures) in sectors: urban/regional planning, biodiversity, water

Criteria set

- Three categories of criteria (further splitted in 14 individual criteria)
 - ▶ **Basic information** to describe a measure
 - Information on costs and benefits of measures
 - Criteria for evaluation of measures

Criteria set II

Basic information	Cost/benefit	Evaluation
 Sector Type of measure Relevance for public sector Urgency, Time-lag between implementation and effect, life-time 	 costs: direct costs, further economic costs, external costs Benefits: economic, environmental, socioeconomic benefits Uncertainty of evaluated costs and benefits 	 Relevance Effectivity Windfall profits Dynamic incentives Acceptance Interactions with other adaptation measures Flexibility (no-regret, scenario-variability)

- Basic information:
 - Analysed a concrete example at the river Elbe in the north of Germany
 - sector: biodiversity, water (flood protection)
 - urgency: high, because long implementation time and time-lag between implementation and effect
- Cost/benefit analysis:
 - Included costs:
 - costs to rebuilt dikes and built new dikes

- Costs to buy land from farmers
- Lossed income for farmers
- Planting costs for pasture forest
- Included benefits:
 - Lower maintenance costs for dikes, due to shorter length
 - Avoided damage costs in case of flooding
 - Nutrition retention
 - Evaluation of biodiversity
- Benefit-cost-ratio: costs (14-18 mio. €) lower than benefits (30-45 mio.)
 (Discounted costs and benefits until 2100)

- ► Calculated two scenarios:
 - first business as usual (without climate change)
 - Second with climate change change

Benefit-cost-ratio:

	Business as usual	With climate change	Main factors	
Costs	10 mio. €	10 mio. €	Dike re/building, income losses	
Benefits	20-35 mio. €	+ 10 mio. € (total: 30- 45 mio. €)	Value for biodiversity conservation	
Discounted costs and benefits until 2100.				

- Evaluation:
 - Relevance: High, because biodiversity conservation is basis for human livelihood
 - ► Effectivity: High, restoration would increase adaptive capacity of ecosystems, effect is proofed
 - Windfall profits: low, because nature conservation mainly task of public institutions

Case study: Heat warning systems

- Basic information:
 - ► Health-related measure, which consists of warning systems and additional activitities in case of warning: additional support for especially vulnerable people (e.g. in nursing homes), opening of cooling rooms, etc.
- Costs/benefits:
 - Included costs:
 - Costs for establishing warning system, information delivery to public, support at heat day: hotline, additional nursing staff

Case study: Heat warning systems

- Included benefits:
 - Avoided heat deaths and heat-related costs in hospitals (based on heatwave 2003, Willingness to pay)
- Cost-benefit ratio: costs (5 mio. € per year, 2100) lower than benefits (up to 2,5 bn. €)
- Evaluation:
 - Relevance: high Health of population
 - ▶ Effectiveness: medium only part of damages on heat days avoidable
 - Acceptance: high, but nursing home, etc faced by additional costs

Results: Cost-benefit ratio of different measures

Benefits higher than costs	Balanced costs and benefits	Costs higher than benefits
 Information compaigns for companies Heat warning systems Regional/urban planning Road/rail infrastructure Restoration pastureland Adapted crops 	 Green roofs, efficient cooling of offices or hospitals Cooling of thermal power stations Diversified tourism offers Improved disaster management 	 Irrigation in agriculture Adaptation of electricity grid Cooling of homes

Results/Summary

- Cost-benefit-ratio should be accompanied by further criteria: relevance, noregret/regret, urgence, etc.
- Main problem: estimation of effect of measures -> which part of climate impact (and costs) can be avoided by the measure?
- Monetarisation of benefits -> vary over different sectors (better for sectors, where market price is availabe, e.g energy, agriculture, worse for biodiversity)
- Monetarisation of health impacts in principle possible, strong influence on the results of benefit assessment
- Monetarisation of decrease of productivity (e.g. transport, energy, cooling of offices) – quite unproblematic

Results/Summary II

- Local effects of climate change and implementation of measures problematic for national evaluations (e.g. regional planning)
- Urgency varies over different measures important for priorisation and selection
- Not only costs and benefit estimates are relevant, also distribution of costs/benefits over different stakeholder groups, risk of windfall profits, separation of autonomous adaptation
- Effects allways assessed against business-as-usual scenario:
 - Difficulties: Integration of other developments, like demographic change
 - ▶ A lot of trends can only be assessed very rough e.g. technological development, change of consumer behaviour (no

Vielen Dank für Ihre Aufmerksamkeit.

Jenny Tröltzsch

Ecologic Institut, Pfalzburger Str. 43-44, D-10717 Berlin Tel. +49 (30) 86880-0, Fax +49 (30) 86880-100

jenny.troeltzsch{at}ecologic{dot}eu

www.ecologic.eu