

Auf dem Weg zum EEG 2.0

Dr.-Ing. Wolfgang Urban **Ecologic Institute gemeinnützige GmbH**

im Auftrag des Bundesumweltministeriums für Umwelt, Naturschutz und Reaktorsicherheit Referat E I 5 - Solarenergie, Biomasse, Geothermie (Strom)

Inhaltsübersicht

- Auf dem Weg zu einem EEG 2.0
 - Ausgangslage, Zielsetzungen, Verfahren
- Herausforderungen im Energiewendeprozess
 - Wind und PV im Zentrum des Transformationsprozesses
 - Flexibilitätsoptionen
- Perspektiven f
 ür die Bioenergie

Ausgangslage zur Neuregelung des EEG

- Rückblick: EEG war Erfolgsgeschichte, Erwartungen mehr als erfüllt
- Mit erreichtem Ausbaustand ist EEG jedoch nicht mehr imstande, den weiteren Ausbau der Energiewende angemessen zu begleiten
- Kritisch:
 - Degressionsvorschriften inflexibel (Marktgeschehen), bewirken
 Fehlallokation und Überförderung, Erreichen der Marktfähigkeit wird
 u. U. behindert, <u>vermeidbare</u> Mehrkosten entstehen
 - rein quantitativer Ausbau der EE, fehlender Einfluss auf:
 qualitative Zusammensetzung, zeitliche Erzeugung, regionale
 Verteilung und Zusammenspiel mit konv. Energien und Netzausbau
- → weitgehender Konsens über Erfordernis einer grundlegenden EEG-Reform, die über die bisherigen, inkrementellen Korrekturen hinausgeht

Zielsetzung bei der Neuregelung des EEG

EEG soll zukünftig zentrales Instrument sein für:

- stetiger und berechenbarer EE-Ausbau
- möglichst rasche Herstellung von Markt- und Wettbewerbsfähigkeit der EE, Kosteneffizienz
- regionale und geographische Koordinierung
- Verbesserte Abstimmung EE-Ausbau mit Netzausbau

Copyright: H.-G. Oed

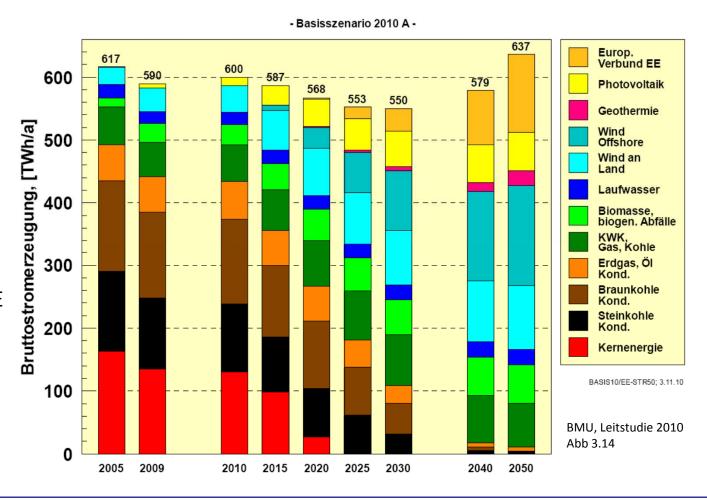
Abstimmung EE-Ausbau mit Ausbau der konventionellen Energien

Verfahrensweise zur Neuregelung des EEG

- EEG-Reform bedarf einer Grund legenden politischen Debatte und einer sorgfältigen fachlichen Vorbereitung, derzeit werden die entsprechenden Vorarbeiten geleistet
- Umsetzung in der nächsten Legislaturperiode
- weiterhin fachliche Vorbereitung durch Plattform "Erneuerbare Energien" unter maßgeblicher Beteiligung der Länder und Akteure
- Konkrete Studienaufträge zu Einzelthemen
- Öffentliche Gesprächsreihe "EEG-Dialog"

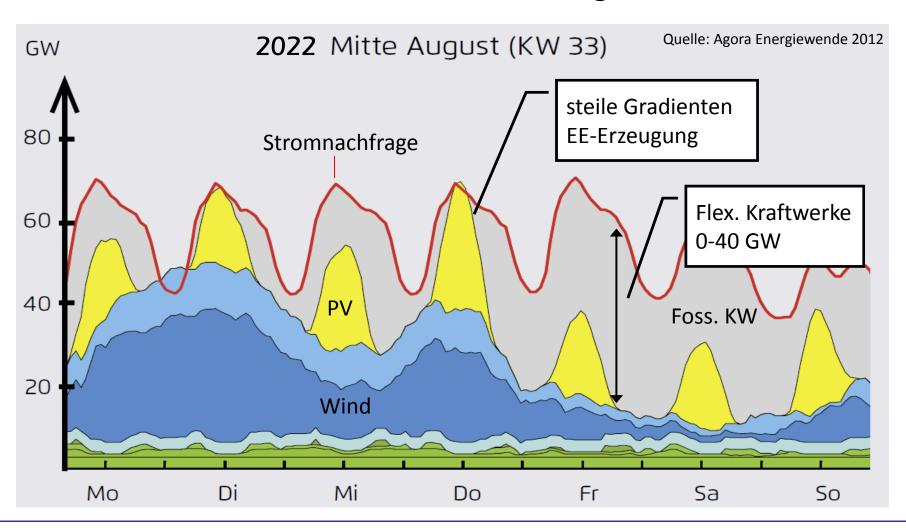
Inhaltsübersicht

- Auf dem Weg zu einem EEG 2.0
 - Ausgangslage, Zielsetzungen, Verfahren
- Herausforderungen im Energiewendeprozess
 - Wind und PV im Zentrum des Transformationsprozesses
 - Flexibilitätsoptionen
- Perspektiven f
 ür die Bioenergie


Auszug aus den Ergebnissen der AG 3 Interaktion

- Erneuerbare Energien müssen im Zentrum der Überlegungen zum Strommarkt stehen, dabei Wind und Sonne als "Eckpfeiler"
- Das Strommarktdesign muss sich somit an die Eigenschaften der fluktuierenden Erneuerbaren Energien anpassen.
- Als Hauptakteure im Markt müssen aber auch erneuerbare Energien Verantwortung übernehmen.
- Die bestehenden Märkte sind grundsätzlich geeignet, um Erneuerbare Energien kosteneffizient in den Markt und das Stromsystem zu integrieren.
- Dem Markt sollte daher zunächst Raum zur Weiterentwicklung gegeben werden, ohne das Strommarktdesign grundlegend zu verändern.

mögliches Szenario des Transformationsprozesses im Stromsektor


- tragende Säule: fluktuierende EE wie Wind und PV
- hoher Bedarf an flex. Erzeugungskapazitäten zur Deckung der Residuallast bei fluktuierenden EE

... und daraus resultierende Herausforderungen

... stellen hohe Flexibilitätsanforderungen an Stromversorgung

- Flexibilität: Fähigkeit von Stromerzeuger und Verbraucher Schwankungen der Residuallast auszugleichen
- positive / negative Regelleistung, wichtig: Dauer,
 Leistungsänderungsgeschwindigkeit, Netzausbau ist Voraussetzung für optimale Nutzbarkeit aller Flexibilitätsoptionen
- je höher Anteil indisponibler EE-Einspeisung, desto höher Flexibilitätsbedarf

Flexibilitätsoptionen

- Lastmanagement (Industrie, PtH)
- bedarfsorientierte EE-Einspeisung (EinsMan, stromgef. KWK)
- Flexibilisierung konv. Kraftwerke (retrofit, Gas-KW, KWK, NEA)
- Speicher (PSW in DACH, N, E-Mobilität, E-Mobilität, PtG)

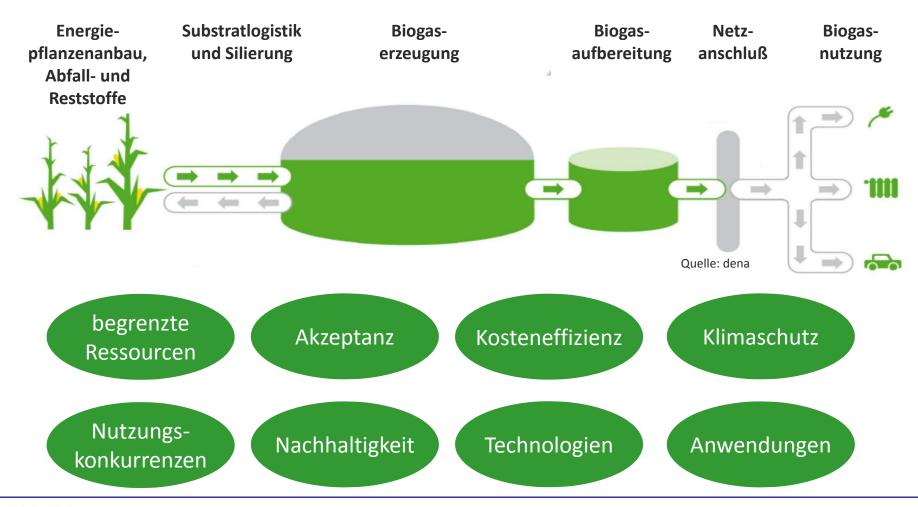
Die Flexibilitätsoptionen im Überblick

Quelle: Dr. Krzikalla, BET vom 14.12.12 auf Basis AG 3 BMU-EE-Plattform

	Potenzial	Dauer	Schnelligkeit in %/min.	Bemerkungen	
DSM Industrie	ca. +2 / -0,7 GW	1 bis 4 Stunden	20-100%	höheres Potenzial für Abschaltungen im Minutenbereich bzw. zu hohen Kosten	
DSM Haushalte	ca. +0,6 GW/ -2,3 GW	Minuten bis Stunden	100%	bis 2030, Zahlen ohne Nachtspeicher und Wärmepumpen	
Power to Heat	> -10 GW	unbegrenzt	20-100%	nur negative Leistung, abh. vom Wärmebedarf	
Einspeisemanagement Wind & PV	"unbegrenzt"	unbegrenzt	100%	nur negative Leistung	
Stromgeführter Einsatz Biomasse und KWK	ca. +/ -20 GW	einige Stunden	5-20%	bis 2030; zus. zu ca. 8 GW bereits genutzter flexibler Leistung	
Nutzung bestehender Kraftwerke	heute ca. 80 GW	unbegrenzt	1-2%	Leistung abnehmend gemäß "Sterbelinie"	
Retrofit bestehender Kraftwerke	ca. +2,9 GW Delta zw. P _{min} und P _{max} bis 2020	unbegrenzt	4-8%	Entscheidung für Retrofit nur wenn wirtschaftlich	
Neubau flexibler Kraftwerke	unbegrenzt	unbegrenzt	4-10%	abh. von Technik, Gasturbinen auch schneller	
Nutzung Netzersatzanlagen	ca. 7 GW	einige Stunden	20-100%	nur positive Leistung	
Pumpspeicher (Deutschland)	ca. 10 GW	Stunden bis Tage	100%	geringe Energiedichte, einzige bewährte und kostengünstige Speichertechnologie	
Druckluftspeicher ("CAES")	beliebig groß, ca. 0,8 – 2,5 TWh	Stunden bis Tage	20-100%	adiabate CAES noch in der Entwicklungsphase, diabate haben niedrigen Wirkungsgrad, kostengünstig	
Batteriespeicher	Unbegrenzt	Stunden bis Tage	100%	teure Option	
Power to Gas	Unbegrenzt	Wochen bis Monate	Nicht relevant	geringer Wirkungsgrad, aus heutiger Sicht einzige realistische Langfristspeicheroption	

Inhaltsübersicht

- Auf dem Weg zu einem EEG 2.0
 - Ausgangslage, Zielsetzungen, Verfahren
- Herausforderungen im Energiewendeprozess
 - Wind und PV im Zentrum des Transformationsprozesses
 - Flexibilitätsoptionen
- Perspektiven f
 ür die Bioenergie


Mögliche Beiträge der Bioenergie

- Erzeugungsmanagement / Energiespeicherung
 - zeitl. Verschiebung Stromerzeugung, Reduktion residualer Lastspitzen
 - Steuerungsinstrument: Marktpreise, Stromauktion auf Basis Verbrauchs- und Erzeugungsprognosen (OTC, day ahead, intraday, spot)
- Beitrag zur Versorgungssicherheit durch systemdienliche Betriebsweise
 - Bereitstellung von Regelleistung zur Frequenzstabilisierung (Ausgleich Prognose – Last), Biomasse kann konv. Reservekraftwerke verdrängen
 - Biogas-BHKW sowohl negative als auch positive Regelleistung (SRL, MRL)
 - regionale Disparitäten zw. Erzeugung und Last: veränderte Abschaltreihenfolge im Einspeisemanagement? Biomasse als Systemdienstleister für NB um regionale Netzprobleme auszugleichen?
- auch langfristig hoher Bedarf an EE-basierter KWK (Biogas, Holz)

Herausforderungen entlang der Wertschöpfungskette

Öffentliche Akzeptanz Biogas

vor 10 Jahren

- Biogas: Win-Win für Bauern, Klimaschutz, regionale Wertschöpfung
- Landwirtschaft: Produktionsüberschüsse, Flächenstilllegungen
- Dynamik EE-Zubau offen, hohe Kosten und Risiken bei Wind und PV
- EEG: möglichst viel EE-Kapazitäten aufbauen, Technologiemix fördern
- Energie vom deutschen Acker, geringere Abhängigkeit
- Bioenergie in der öffentlichen Wahrnehmung der Alleskönner

heute

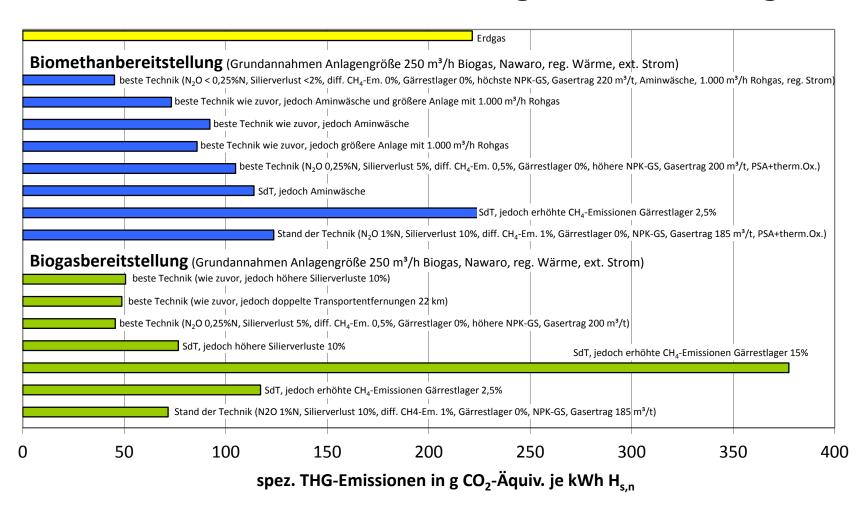
- Nutzungskonkurrenzen (Futter- u. Nahrungsproduktion, Naturschutz)
- teilw. diffamierende, interessengeleitete, Anti-Biogas-Debatte
- weltweit steigender Bedarf an Nahrungs-, Futtermitteln, Bioenergie, Wasserknappheit
- Klimabilanz Biogas nicht immer positiv, ILUC-Thematik
- Strom aus Biomasse teurer als PV, kaum Potenzial zur Kostensenkung
- Qualität vor Quantität: Grundlast out, Flexibilität im Ausgleich zu Wind / PV
- Biogas eine Brückentechnologie?

Potenziale, Nutzungskonkurrenzen, Akzeptanz

• Wie viel Biogas (er)trägt dieses Land?

- Prognose 2012: knapp 1 Mio. ha für Biogas
- Nutzungskonkurrenzen, zu hohe Maisbelegung der AF in Regionen mit hohem Tierbesatz
- Abnehmende öffentliche Akzeptanz
- bei Abfall- und Reststoffen Erschließungskosten beachten
 Gefahr von Stoffstromumlenkungen bei bereits genutzten Ressourcen
- Biomasseimporte: Nachhaltigkeit? Kosten? neue Abhängigkeiten?

Nachhaltige Ausgestaltung des weiteren Energiepflanzenanbaus


- Steuerungsmechanismen bei Bioenergiezubau (Mengen, regional)?
- Anlagenerweiterungen: welche Standorte haben Potenzial?

2013/14 politisch zu beantworten ext. E I 5 - Urban; 20.12.2012 E I 5-5

Bandbreite THG-Emissionen Biogasbereitstellung

Kosten der Biogaserzeugung und -nutzung

Kosten der Biogaserzeugung

- Economy of scale vs. Standortangepasstheit, Kostensenkungspotenziale?
- Kosten Biogasaufbereitung und -einspeisung hoch, kein Selbstzweck!
- Erschließungskosten von Abfall- und Reststoffpotenzialen
- Biogas aus Energiepflanzen: hohe Rohstoffkosten

Was ist (Strom, Wärme oder Mobilität) aus Biogas zukünftig wert?

- Kraft-Wärme-Kopplung, bedarfsorientierte Stromerzeugung in flex.
 Biogaskraftwerken, Systemdienstleistungen im Stromsektor
- Biogas im Mobilitätssektor (Schwerlastverkehr, Flotten, ländl. Nahverkehr?)
- Biogas im Wettbewerb mit anderen EE sowie konv. Energieträgern (insbesondere Erdgas), keine Knappheitssignale bei Erdgas
- geringste Klimaschutzwirkung bei Einsatz in Brennwerttherme

Ökonomische Herausforderungen

Strom aus Biomasse	2008	2011	2012
Anteil an der EEG-Umlage	33%	24%	26%
Anteil an EEG-Stromeinspeisung	27%	25%	27%
Vergütungszahlungen (Mio. €)	2.699	4.250	4.764
Differenzkosten (Mio. €)	1.619	2.880	3.304

Die EEG-Umlage ist seit 2008 von 1,12 ct/kWh auf 3,56 ct/kWh (2012) gestiegen und wird **2013 5,28 ct/kWh** betragen. Energiewende muss bezahlbar bleiben!

Zwischenfazit zur Bioenergie

- Begrenzter Beitrag aufgrund Nutzungskonkurrenzen
 - Wirtschaftl. Abfall- u. Reststoffpotenzial weitgehend erschlossen, weitere
 Beiträge über Energiepflanzen nur noch begrenzt möglich
- Kosten der Stromerzeugung aus Biogas und der Flexibilisierung
 - Kostensenkungspotenzial? Biogas: 50 bis 80 % betriebsgebundene Kosten (Rohstoffe), die vom Agrarrohstoff- und Energiemarkt getrieben sind
 - Kosten der Flexibilisierung Stromerzeugung aus Biogas, insb. des Bestands?
- Biogas in der Langfristperspektive?
 - Potenzial, Kosten, erhaltenswerte bzw. ausbaufähige Standorte nach Auslaufen der 20 Jahre EEG-Förderung? Biogas als Kraftstoff?
- Wie hoch ist das mobilisierbare Potenzial flex. Biomassekraftwerke?
 Wie hoch sind die Kosten (im Wettbewerb der Flexibilitätsoptionen)?

Fazit

- Kernenergie-Ausstieg ist entschieden und unumkehrbar, ebenso die schrittweise Transformation der Energieversorgung bis 2050 auf erneuerbare Energien und Energieeffizienz
- Umsetzung der Energiewende muss volkswirtschaftlich verantwortbar und bezahlbar sein
- Für generationenübergreifende Projekte dieser Dimension gibt es keine Masterpläne. Wichtig sind klare Grundprinzipien, Verlässlichkeit und Konsens in zentralen Punkten
- EEG 2.0: Wind und PV zukünftig die Eckpfeiler der Energieversorgung, korrespondierend steigender Bedarf an Flexibilität, Fokus auf Wettbewerbliche Elemente, stetiger EE-Ausbau und Abstimmung mit Netzausbau und konv. Kraftwerken

Fazit

- **EEG 2.0:** politische Debatte um Rolle und Potenzial von Biogas
- Akzeptanz, Ressourcenbegrenzungen
- Klimaschutz und Nachhaltigkeit von Biogas
- Kosteneffizienz verbessern
- neue Rolle im e-Wendeprozess annehmen und konsequent umsetzen
 - strom + wärmegeführte KWK mit Biogas (flexible BHKW) und Regelenergiebereitstellung (Systemdienstleistungen) als verlässl. Partner von Wind und PV
 - Biogas als Kraftstoff
- ehrliche Debatte um Herausforderungen und Chancen suchen, Akzeptanz stärken durch überzeugende Lösungen, Effizienzpotenziale entlang der Wertschöpfungskette heben

Vielen Dank für Ihre Aufmerksamkeit!

Dr.-Ing. Wolfgang Urban

Ecologic Institut, Pfalzburger Str. 43-44, 10717 Berlin wolfgang.urban@ecologic.eu, www.ecologic.eu

i. A. des Bundesumweltministeriums, Referat E I 5 Solarenergie, Biomasse, Geothermie (Strom)

Tel.: + 49 (0)30 18305 3627

e-mail: wolfgang.urban@bmu.bund.de

www.erneuerbare-energien.de