

Herausforderungen und Potenziale für eine optimierte und ressourcenschonende Biomethanbereitstellung

Wolfgang Urban

Ecologic Institute

im Auftrag des Bundesumweltministeriums für Umwelt, Naturschutz und Reaktorsicherheit

Referat KI III 2 - Solarenergie, Biomasse, Geothermie, Markteinführungsprogramme für Erneuerbare Energien

Ecologic Institut

- Think Tank für angewandte Umweltforschung, Politikanalyse und Beratung mit Büros in Berlin, Brüssel, Wien und Washington DC
- privates, unabhängiges und gemeinnütziges Institut
- Das Ecologic Institut wurde 1995 gegründet und ist Partner im Netzwerk der Institute für Europäische Umweltpolitik
- juristische und fachlich-wissenschaftliche Unterstützung des Bundesumweltministeriums (BMU), Unterabteilung KI III
 - Auswertung und Fortentwicklung des EEG und darauf beruhender Rechtsverordnungen
 - Fortentwicklung der Rahmenbedingungen für die Biogaserzeugung, aufbereitung und -netzeinspeisung,
 - Erarbeitung und Umsetzung von Nachhaltigkeitsstandards für energetisch genutzte Biomasse
 - Auswertung und Fortentwicklung des Erneuerbare-Energien-Wärmegesetzes (EEWärmeG)

Biomethan – Einordnung der Nutzungsoptionen

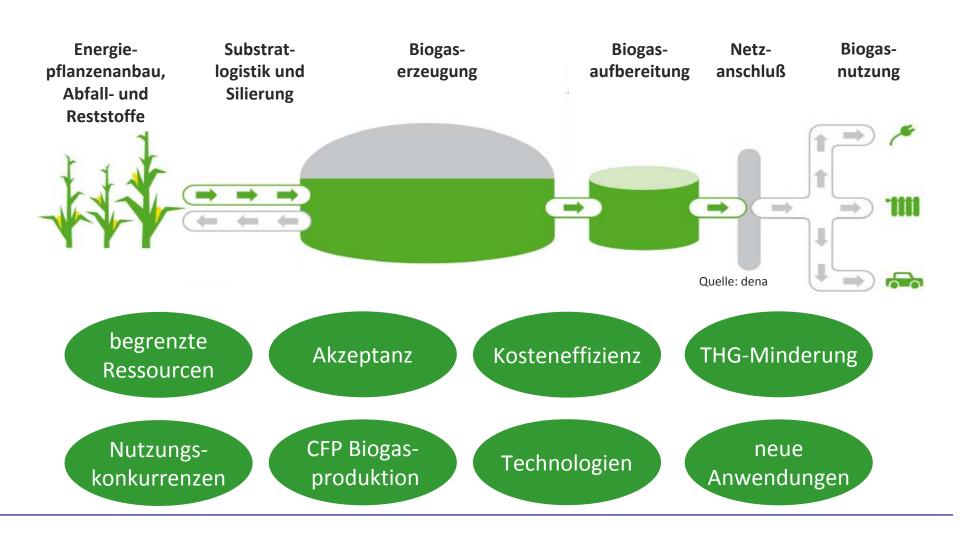
Biomasse

Energiepflanzen Gras Energierübe

Abfall- u. Reststoffe Gülle

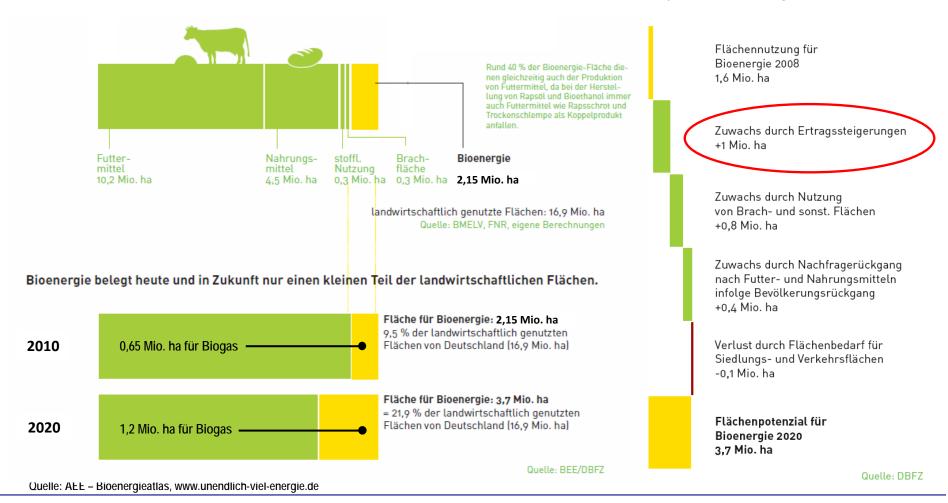
Bildquellen: AEE, www.unendlich-viel-energie.de; www.erdgas.info: Broschüre Bio-Erdgas – Umweltschonende Energie mit Zukunft

Energiekonzept: Festschreibung konkreter Ziele


	Klima	Erneuerbare Energien		Effizienz		
	Treibhaus- gase (Vgl. 1990)	Anteil Strom	Anteil gesamt	Primär- energie	Energie- produk- tivität	Gebäude- sanierung
2020	- 40 %	35%	18%	- 20%		
2030	- 55 %	50%	30%		Jährliche	Rate
2040	- 70 %	65%	45%	V	Steigerung um	verdoppeln 1% → 2%
2050	- 80-95 %	80%	60%	- 50%	2,1%	170 / 170

Quelle: BMU 2010

Herausforderungen entlang der Wertschöpfungskette



Biomassepotenzial - Flächenverfügbarkeit

Flächenpotenzial für Bioenergie bis 2020

möglicher

Biomassepotenzial - Flächenverfügbarkeit

So viel Energie kommt von einem Hektar:

vorstellbares Szenario

Fläche

_			
1	ha	N/I:	216
	Ha	1410	alə

- = ca. 45 t Ernteertrag
- = ca. 9.000 m³ Biogas
- = 18.000 kWh_{el} = **Strom für 5 Haushalte**
- + 12.000 kWh_{th} = Wärme für 0,6 Haushalte

Quelle: AEE - Bioenergieatlas, www.unendlich-viel-energie.de

		Biogasertrag	
	Hektar	in Mrd. Nm³/a	in TWh/a
2008	500.000	4,5	23,4
2010	650.000	5,85	30,4
2020	1.200.000 1.300.000	10,8 11,7	56,2 60,8
2030	2.140.000	19,2	100

Biogaspotenzial aus Rest- und Abfallstoffen

Rest- und Abfallstoffkategorien technisches Potenzial für 2020	in PJ	in Mrd. kWh/a
Grasschnitt	23	6,4
Landschaftspflegematerial	16	4,4
tierische Exkremente und Einstreu	96	26,7
Abfälle aus Gewerbe und Industrie	12	3,3
sonst. Ernterückstände	13	3,6
org. Siedlungsabfälle	20	5,6
Summe	180	50

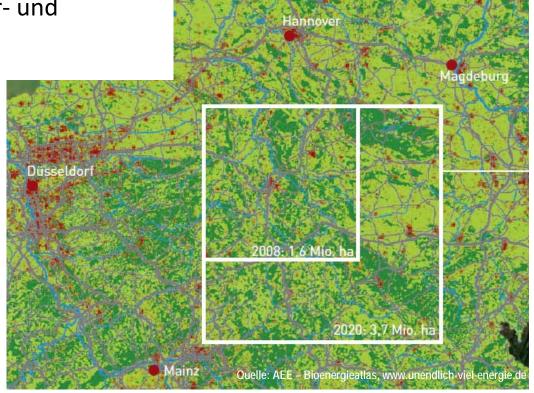
- max. wirtschaftlich erschließbares Potenzial ca.
 23 Mrd. kWh/a
- entspricht im Energieäquivalent einer Flächensubstitution (Energiemaisanbau) von 490.000 ha

Quellen: BMU-Leitstudie 2009; Nationaler Aktionsplan 2010; BGW-DVGW 2005; BMU 2004 – DLR, IFEU, WI; eigene Berechnungen 2011

Energiepflanzenanbau

Verfügbarkeit landwirtschaftlicher Nutzflächen begrenzt

 Flächenausweitung in Kontext der verschiedenen Flächennutzungsansprüche (Nahrungs- und Futtermittelproduktion, Natur- und


Landschaftsschutz möglich

auch eine Frage der öffentlichen Akzeptanz

 Flächenerträge nicht beliebig steigerbar!

limitierender Faktor Wasser

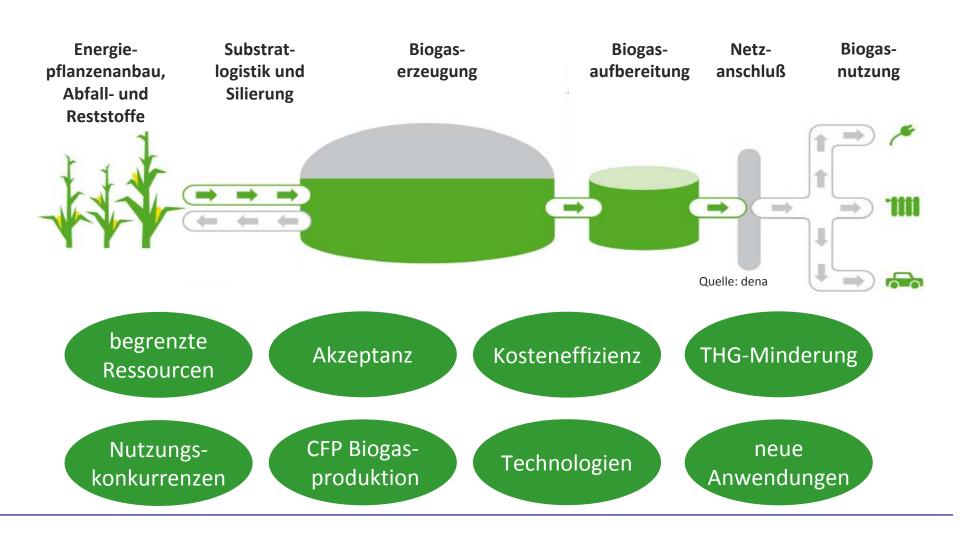
2010: 2,15 Mio. Hektar

Fazit

- Begrenzt verfügbare Ressourcen für Biogas
 - Nutzungskonkurrenzen Energiepflanzenanbau, Nachhaltigkeit! Akzeptanz!
 - Erschließungskosten bei Abfall- und Reststoffen beachten
 - Biomasseimporte: Nachhaltigkeit! Kosten, neue Abhängigkeiten vermeiden

Verpflichtung zur klima- und energieeffizienter Nutzung!

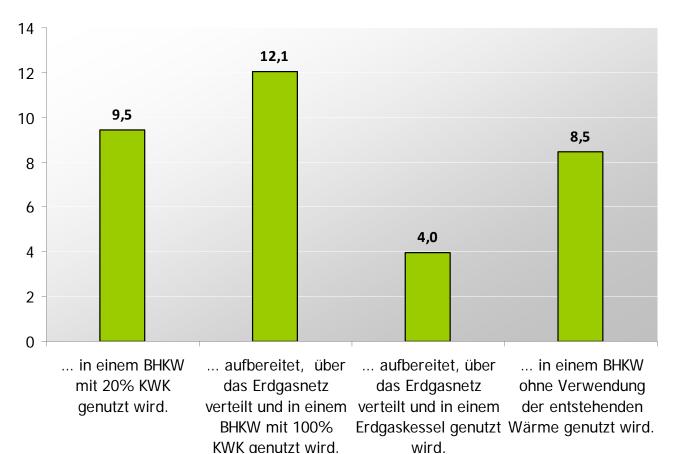
 Biogaspotenzial begrenzt und abhängig von Wasserverfügbarkeit, Flächenverfügbarkeit, Akzeptanz, Erschließung Abfall- und Reststoffpotenziale, Klima...


Nachhaltige Ausgestaltung des weiteren Energiepflanzenanbaus

- Steuerungsmechanismen bei der Erschließung neuer Standorte?
- Anreize zum Ausbau bereits vorhandener Standorte mit Potenzial (welche?)

Herausforderungen entlang der Wertschöpfungskette

Umweltwirkungen, Klimaschutz I


- THG-Emissionen bei Bereitstellung von Biogas/Biomethan
 - Abhängig von Substrat, Anbausystem, Effizienz Konversions- u. Aufbereitungstechnik, Vermeidung diff. CH₄-Emissionen, Gärrestlager etc.
 - Gülle-Biogas: zwischen -40 und 0 g CO₂-Äquiv./kWh Gas
 - Nawaro-Biogas: zwischen 145 120 100 80 g CO₂-Äquiv./kWh Gas
- THG-Gutschriften abhängig von Biogasnutzungspfad
 - Was wird verdrängt? Komparator
 - Wärmenutzungsgrad!

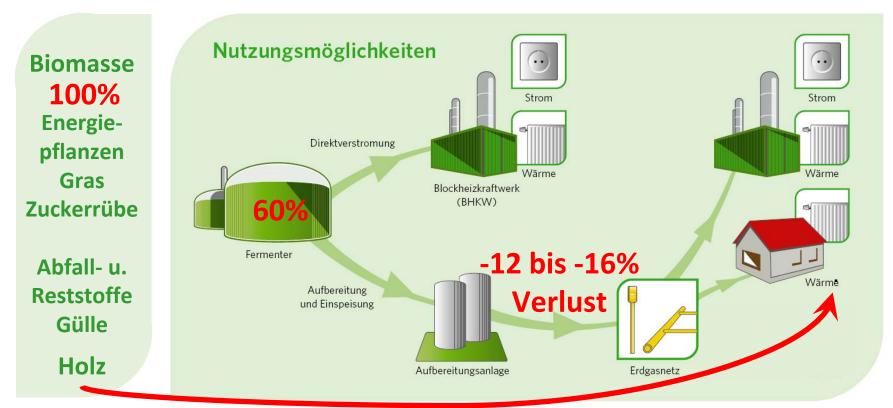
Umweltwirkungen, Klimaschutz III

Vermiedene Treibhausgas-Emissionen (in t CO₂-Äq.), wenn Biogas...

Eingesetzte Primärenergie: Biogas aus der Vergärung von Mais (Ertrag von 1 Hektar/Jahr)

Netto-THG-Minderung nach Abzug der THG-Emissionen für die Bereitstellung Biogas

Quelle: UBA, IFEU Stand: Januar 2011

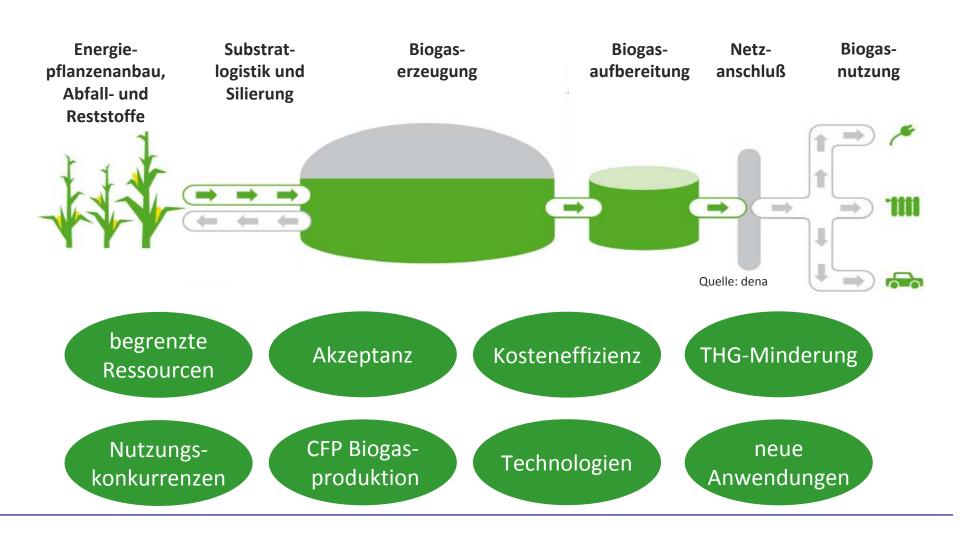

Umweltwirkungen, Klimaschutz II

- Biomasseproduktion ist nicht per se klimafreundlich, deshalb nachhaltiger Biomasseanbau bzw. Flächenbewirtschaftung und effiziente Biogasnutzung
 - Keine Umwidmung von Flächen mit hohem Naturschutzwert, Biodiversität oder Kohlenstoffbestand (Primärwälder, Grünland, Moore)
 - Minimierung THG-Emissionen bei Anbau, Düngung, Ernte, Konversion
 - Einhaltung Fruchtfolge, alternative Feldfrüchte, nicht nur Mais, Blühstreifen
 - Schließung regionaler Stoffkreisläufe durch standortangepasste Anbausysteme
 - Minimierung Bodenerosion, Gewässerschutz
- Beeinträchtigungen des Landschaftsbildes vermeiden
- Erschließung von Abfall- und Reststoffpotenzialen, soweit ökonomisch vertretbar

Biogas – Energetische Effizienz der Nutzungspfade

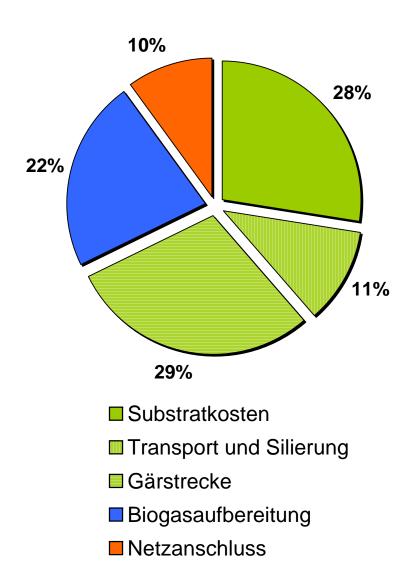
Benchmark für Biomethanverwertung unter dem Aspekt Energieeffizienz: Biogas-KWK vor Ort m. geringer Wärmenutzung, Holzfeuerung im Wärmesektor

Bildquellen: Agentur für Erneuerbare Energie (AEE), www.unendlich-viel-energie.de; www.erdgas.info: Broschüre Bio-Erdgas – Umweltschonende Energie mit Zukunft


Fazit

- Klimaschutzwirkung abhängig von Biogasnutzungspfad
 - Ausbau der Kraft-Wärme-Kopplung erforderlich
 - Biomethanverwertung muss energieeffizienter und klimafreundlicher sein als Stand der Technik (Holzfeuerung, Vor-Ort-Verstromung)
 - geringste Klimaschutzwirkung bei Einsatz in Brennwerttherme
 - Biogaseinspeisung ist kein Selbstzweck!
- CO₂-Fußabdruck von Biomethan angehen!
 - Minimierung THG-Emissionen bei der Biogasbereitstellung und -aufbereitung (Düngung, Silierung, Technologien, Reduktion CH₄-Emissionen)
 - weitere Erschließung von Abfall- und Reststoffpotenzialen

Herausforderungen entlang der Wertschöpfungskette



Biomethanproduktionskosten

- Kostenverteilung in hohem Maße abhängig von Anlagengröße
- Kosten Netzanschluss und Aufbereitung steigen überproportional mit abnehmender Anlagengröße
- Hohes Optimierungs- bzw. Effizienzsteigerungspotenzial bei Substraten (Silierung), Netzanschluss und Gasaufbereitung

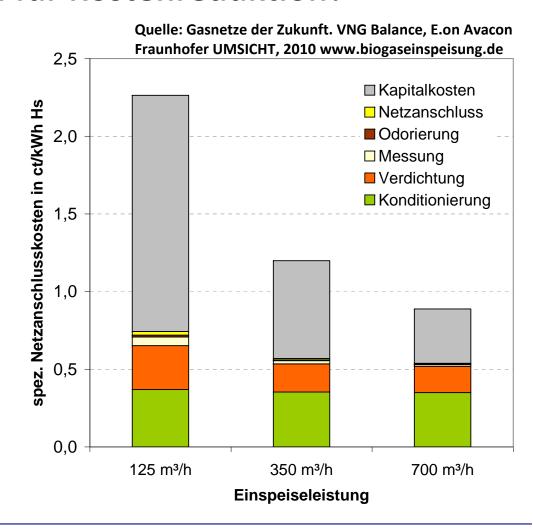
Annahmen

NawaRo-BGA mit Gasleistung von 1.000 Nm³/h Rohgas, Substrat frei Halm 25€/t FM, Transport und Silierung 10 €/t FM, Vollkosten, Netzanschluss inkl. Betriebskosten, spez. Gesamtkosten 8 ct/kWh Hs



Optimierungspotenzial bei der Biogasaufbereitung

- Skalierungseffekte
- Strombedarf heute 0,25 kWh/Nm³ Rohgas Zukunft < 0,2 kWh Amine: Temperatur ↓
- Investitionen ↓ durch Vereinfachung, Standardisierung
- Reduktion Energiebedarf im Vergleich zu Investitionskosten viel bedeutender
- Neue Technologien?

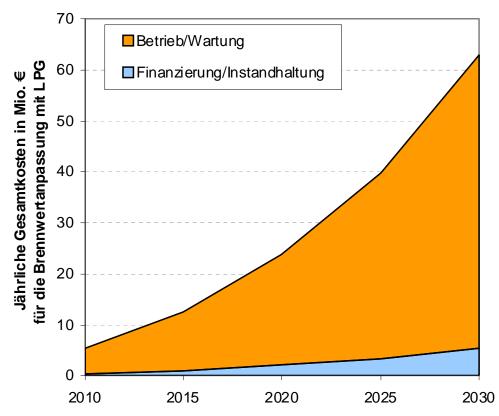


Netzanschluss – Potenzial für Kostenreduktion?

- Größenskalierungseffekte hohe Fixkosten unabhängig von Einspeiseleistung
- Wahl Netzanschlusspunkt entscheidend (örtliche Gasqualität, Netzabschnitt, Druckstufe...) bzgl. Kosten
- Netzkonformität G 685
 Ersatzverfahren zur
 LPG-Zugabe nötig

Beispiel

Netzanschluss inkl. aller Betriebskosten, Einspeisung in HD-Netz 16 bar, H-Gas mit 11,3 kWh/Nm³ Hs, Konditionierung mit LPG, Stichleitung 1,5 km, Verdichter 100% redundant

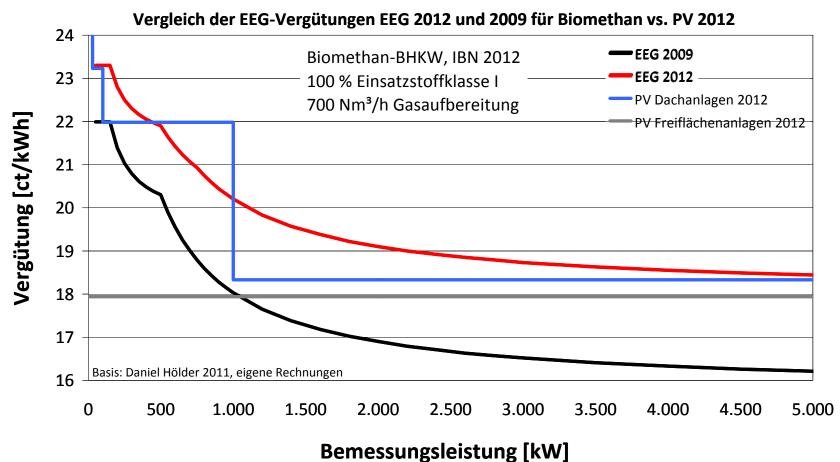


Netzanschluss - Potenzial für Kostenreduktion?

Beispielszenario: Biomethaneinspeisung mit LPG-Konditionierung ONTRAS-Netz (öBL)

I	Einspeisemenge [Mio. m³/a]
2010	28
2015	35
2020	58
2030	118

Herstellung Netzkonformität nach G 685 über Brennwert-Reko, dann Kostenreduktion um 50% möglich


Quelle: Gasnetze der Zukunft. VNG Balance, E.on Avacon Fraunhofer UMSICHT, 2010 www.biogaseinspeisung.de

Kosteneffizienz der erneuerbaren Energien

Biomethan-BHKW

Neue Anwendungen und Verfahren?

Beispiel

- Biogasaufbereitung und Verwendung als CNG an ländlichen Tankstellen
- Membrantechnik aufgrund geringer Investitionskosten und exzellentem Start-Stopp-Betriebsverhalten interessant
- Erdgas-CNG-Preise an deutschen Tankstellen (Sept. 2011) min /mittel / max in ct/kWh 5,7* 7,6 9,5

Quelle: Harasek, TU Wien, Membrananlage Bruck a.Leitha (A)

^{*} vermutlich L-Gas

Fazit

• Kosten- und Energieeffizienz

- hohe Kosten für Biogasproduktion, Aufbereitung und Einspeisung nur zu rechtfertigen bzw. förderfähig, wenn ein echter Mehrwert erzielt wird
- Kosteneffizienz vs. Akzeptanz / standortangepasste Lösungen
- Energieeffizienz: Vor-Ort-Nutzung vs. Einspeisung in das Gasnetz

Joker Systemintegration

- Speicherfähigkeit Biogas
- bedarfsgerechte Stromerzeugung aus Biogas (flexible BHKW) und verbesserte Integration fluktuierender erneuerbarer Energien
- Regelenergiebereitstellung
- zahlreiche technische Herausforderungen, hohes Optimierungspotenzial entlang der Wertschöpfungskette: vorrangige Aufgaben Kostenreduktion, Reduktion Energiebedarf und damit Reduktion CO₂-Fußabdruck

Vielen Dank für Ihre Aufmerksamkeit!

Dipl.-Ing. Wolfgang Urban

Ecologic Institute, Pfalzburger Str. 43-44, 10717 Berlin Tel. +49 (30) 86880-0, Fax +49 (30) 86880-100 wolfgang.urban@ecologic.eu, www.ecologic.eu

i. A. des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit Referat KI III 2 - Solarenergie, Biomasse, Geothermie, Markteinführungsprogramme für Erneuerbare Energien

Tel.: + 49 (0)30 18305 3627

e-mail: wolfgang.urban@bmu.bund.de