

Coastal risk reduction: Converging approaches in the U.S.A. and the Netherlands?

<u>Ap van Dongeren</u>, Deltares, member NRC Committee

Herman van der Most, Deltares

A tale of two countries' response to disasters

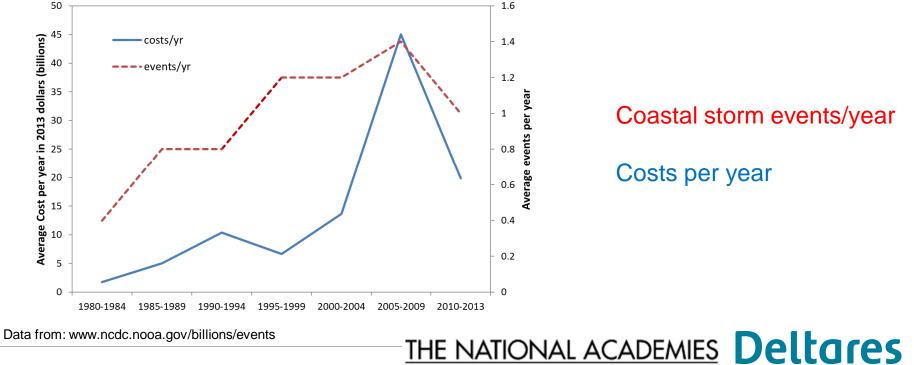
The Netherlands

- 66 % of NL is flood prone
- Includes most major cities, ports, airports.
- Epic disaster is 1953 Flood
- Proactive response:
 - Codification and rationalization of flood risk based on CBA
 - Upscaling of governance.
 - Focus on flood prevention
- "Shared" responsibility
- Little flood awareness

U.S.A.

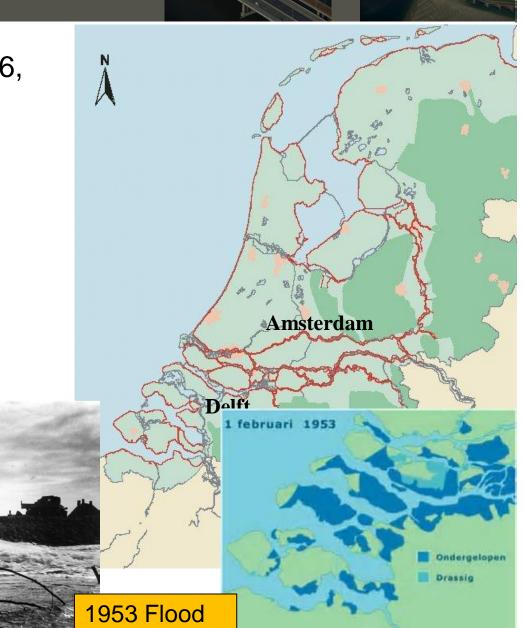
- Coastal zone (and river valleys) are flood prone
- Includes 8 cities of global top 20
- Epic disasters: Katrina and Sandy
- Reactive response:
 - Disaster relief, rebuilding
 - Limited preventive measures
 - Focus on flood mitigation and preparedness.

es

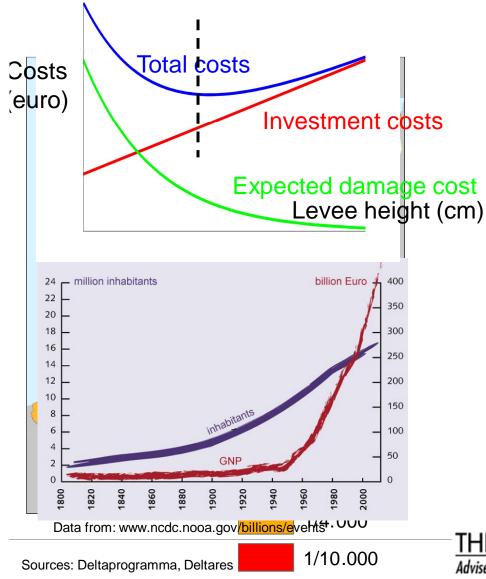

- "Personal" responsibility
- Episodic flood awareness

Common New Approach?:

Coastal risk management guided by benefit-cost analysis, acceptable fatality risk and socio-environmental aspects


A common threat: coastal risk is increasing

- Risks are increasing, because hazards AND consequences are increasing
- Hazards of flooding increase due to climate-change and land subsidence
- Consequences increase due to economic development



Case 1: The Netherlands

- Epic coastal floods 1825, 1916, 1953
- After 1953:
 - Codification of risk
 assessment
 - Dedicated governance by water boards and national government

Current Flood standards (1960-2017)

Deltacommission 1960:

- Standard expressed in probability of exceedance of water level
- Standard only <u>calculated</u> by CBA for Central Holland
- Regional differentiation: standards tuned on expected impacts
- Not up to date due to increase of population and wealth since 1960
- SLR, higher runoffs, changing wind and wave climate, land subsidence

Future Flood standards (2017

Standards expressed in terms of flood probability (impact)

Result of National Vision in "Delta Program"

Standards based on three criteria:

Societal cost-benefit analysis:

- Investment costs
- Direct and indirect damages, including value of human life (VOSL)

Local Individual Risk (LIR):


• Base level of safety

Societal/Group Risk:

• Prevent social disruption of large-scale events.

THE

Advise

Case 2: The U.S. Eastern & Southern Seaboard

- 8 U.S. cities in global top 20 of estimated potential annual losses from coastal storm flooding
- Hurricanes Sandy and Katrina highlighted vulnerability

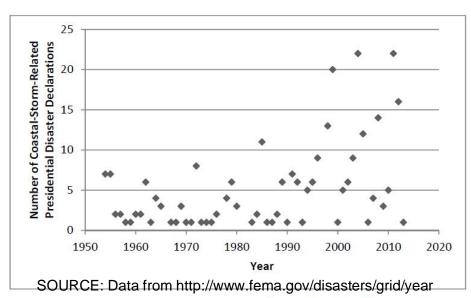

Photograph by Master Sgt. Mark Olsen/U.S. Air Force

Image source: NRC committee

(Federal share of) Damages increasing

Number of federally declared disasters increasing

Share of federal aid increasing.

>75
69
50
23
6

Challenges

- Misalignment of risk, reward, resources and responsibility
 - Federal government pays, local incentive to build into vulnerability.
- Governance:
 - Responsibility spread over federal, state and local authorities
 - Multiple agencies and departments: FEMA, USACE, HUD, NOAA, USGS.
 - No national or even regional vision
- Disaster Risk Reduction Approach:
 - Reactive, rather than proactive: funds allocated for response, recovery and rebuilding, little for mitigation.
 - Positive exception: "<u>Rebuild by Design</u>"

Recommendations from the National Academy of Sciences

- Develop a national vision of coastal safety
 - Pro-active role: use federal resources to reduce coastal risk vs enabling it to increase
- Construct a coastal risk framework based on a benefitcost analysis constrained by
 - acceptable individual fatality risk and
 - social and environmental aspects
 - group risk of mass casualties
- Consider full array of risk reduction strategies

Array of measures: Hazard reduction

- Hard structures
 - Urban areas, confined space
 - Environmentally-friendly design
- Dune and beach nourishment
- Nature-based: Saltmarsh, seagrass, mangroves, oyster reefs, etc.
 - Spatial demand

nage sources: Wikipedia,

Image source: NOAA

A mix of measures: vulnerability reduction

- Land use restrictions
- Building elevation
- Training for evacuation
- Awareness-raising
- Build-in resilience
- Suppress cascading effects
- High documented benefit-cost ratios (5:1 to 8:1) but difficult to achieve

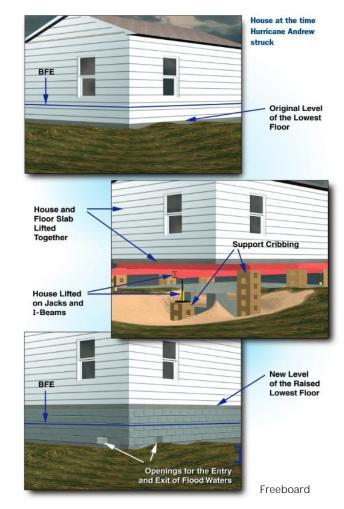
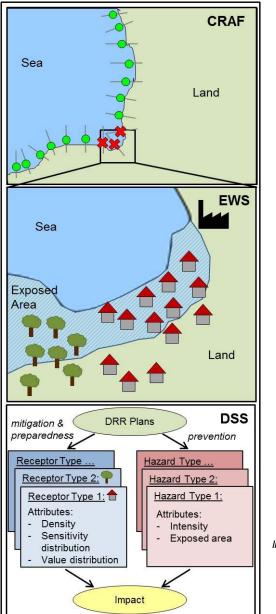



Image source: FEMA

In Europe: The RISC-KIT Approach

1. <u>Coastal Risk Assessment Framework</u> (CRAF) to identify hot spot areas of coastal risk

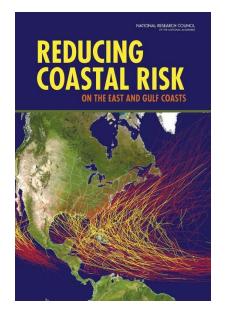
2. <u>Evaluation tool to analyze effects of DRR</u> <u>measures</u> on hot spots

3. Web-based <u>management guide</u> of innovative, cost-effective, ecosystem-based DRR measures;

4. <u>Coastal Risk Database</u> of present and historic socio-economic and physical data.

Image source: RISCKIT.eu

1630hr: Session 4.1: Auditorium 11


- U.S. and The Netherlands faced with **similar threats** of increased coastal risk
- Suggests coastal risk framework based on a benefit-cost analysis constrained by
 - acceptable individual fatality risk and
 - social and environmental aspects
 - group risk of mass casualties
- Use the full array of preventive, mitigation and preparedness measures
- Differences are in the alignment of risks, rewards, resources and responsibility
 - Do not underestimate differences in governance, historical and cultural experiences and outlook

More resources:

- NAS report at <u>www.nap.edu</u>
- Webinar and slides on dels.nas.edu
- <u>www.rebuildbydesign.org/</u>

- <u>www.risckit.eu</u>
- <u>http://www.deltacommissaris.nl/english/delta-</u> programme/ THE NATIONAL ACADEMIES **Deltares**